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Introducción

Dentro del universo de los datos cada vez toma mayor importancia la palabra
privacidad la cuál se concibe como la necesidad que el usuario de distintos sistemas
y aplicaciones tiene de que sus datos personales no puedan ser conocidos o vistos
sin su consentimiento. La realidad es que para hacer uso de la mayoría de las apli-
caciones que se conectan a internet el usuario debe otorgar acceso a datos sensibles,
estos pueden incluir su ubicación, su nombre, su ocupación, lo que busca en los na-
vegadores, sus compras a través de la red, etc. Grandes empresas tecnológicas desde
sus centros de investigación han empujado iniciativas para lograr métodos que a la
vez les permitan usar datos de los usuarios para distintos fines, pero garantizando a
estos privacidad.

Estos métodos son aquellos enmarcados dentro del concepto de privacidad diferen-
cial. Un área crítica en la que datos son usados es el aprendizaje máquina (machine
learning), aquí se cuenta con una amplia gama de modelos estadísticos que se usan
principalmente para predecir y/o clasificar. De manera muy general podemos decir
que en la mayoría de los modelos de machine learning se busca calcular los paráme-
tros del modelo a través de un conjunto de entrenamiento minimizando una función
que mide el error de las predicciones. La familia de algoritmos de descenso del gra-
diente proporciona un gran surtido de métodos para minimizar la función de error
o pérdida.

Los datos atraviesan este proceso de optimización, y en determinados contextos
se han desarrollado técnicas que son capaces de vulnerar la privacidad de los datos,
aún después de que estos han sido procesados por estos algoritmos.

La tesis se desarrolla en torno al tema de privacidad diferencial dentro de algoritmos
iterativos los cuales generalizan cierto tipo de algoritmos descenso del gradiente. En
particular se estudia el teorema 22 de [Fel+18] el cual proporciona garantías de
privacidad para los algoritmos citados.

En el capítulo 1 se introducen los conceptos básicos usados en el enfoque mate-
mático sobre la privacidad en bases de datos, así como una breve reseña histórica
del abordaje de este problema.

En el capítulo 2 se abordan la definición de privacidad diferencial así como las
herramientas matemáticas usadas en su estudio.

En el capítulo 3 se da un repaso de la divergencia de Renyi se introducen sus moti-
vaciones así como resultados que son usados en capítulos posteriores.
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4 ÍNDICE GENERAL

El capítulo 4 trata de la distancia Wasserstein, en particular para este trabajo se
usa la distancia Wasserstein infinito, se revisan los conceptos básicos y resultados
útiles.

Dentro del capítulo 5 se exponen los teoremas principales, aquellos que propor-
cionan garantías de privacidad para algoritmos iterativos.

Finalmente en los apéndices A y B se repasan resultados y conceptos de medi-
da, probabilidad y conjuntos convexos que son importantes dentro del resto de los
capítulos.



Capítulo 1

Privacidad

1.1. Introducción

El concepto matemático de privacidad surge en medio del tratamiento compu-
tacional de datos. Por ejemplo:

1. Análisis estadístico de datos: Cuando empresas o instituciones guberna-
mentales publican estadísticas agregadas (promedios, conteos, histogramas),
la aplicación de la privacidad permite hacerlo sin riesgo de re-identificación.

2. Aprendizaje estadístico (Machine Learning) usando datos sensibles:
Al usar datos personales para entrenar modelos de Machine Learning (histo-
riales de salud, imágenes médicas, textos escritos por usuarios, etc.) se pone
en peligro la privacidad de los usuarios.

3. Recolección de datos del usuario: En aplicaciones móviles y/o en navega-
dores web se recolectan datos del usuario para mejorar productos o personalizar
recomendaciones. En este caso también la privacidad es vulnerable.

La privacidad computacional se ha formulado conceptualmente de distintas mane-
ras según los problemas que se intenten resolver. Ésta surgió como respuesta a las,
cada vez mayores, preocupaciones sobre la exposición y uso de datos personales
en una época caracterizada por la explotación masiva de información y los límites
de las técnicas tradicionales de anonimización. En los años noventa Latanya Swee-
ney propone la técnica del k-anonimato, sin embargo, investigaciones posteriores
demostraron que, incluso, tras eliminar identificadores directos (como nombres); la
combinación de ciertos datos (como edad, código postal y sexo) podía permitir re-
identificar personas con sorprendente facilidad. Fue así como surgió la necesidad
de un nuevo paradigma de privacidad que no dependiera de ocultar o transformar
datos, sino de garantías matemáticas robustas.

La definición formal (matemática) de privacidad diferencial fue propuesta por Cynthia
Dwork, Frank McSherry, Kobbi Nissim y Adam Smith, en 2006, en el artículo Cali-
brating Noise to Sensitivity in Private Data Analysis publicado en Proceedings of
the Third Theory of Cryptography Conference (TCC 2006). Su propuesta en lugar
de buscar que ciertos datos pudieran anonimizarse por completo, se propuso lograr
medir el cambio en la salida de un algoritmo cuando se agrega o elimina un elemento
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6 CAPÍTULO 1. PRIVACIDAD

del conjunto de datos. Así, se podía asegurar que ningún resultado revelara infor-
mación sensible sobre una persona en particular, sin importar cuánto conocimiento
previo tuviera un atacante.

En 2014 Google implementó privacidad diferencial en su sistema RAPPOR (Rando-
mized Aggregatable Privacy-Preserving Ordinal Response) este es una aplicación que
recopila estadísticas de uso del navegador Chrome de los usuarios, la implementación
de privacidad diferencial tenía como objetivo conseguir información agregada (ma-
temáticamente hablando estadísticos) sin revelar datos individuales de los usuarios,
para ello RAPPOR implementa una forma de privacidad diferencial local donde los
datos son aleatorizados en el dispositivo personal antes de ser enviados a los servi-
dores. En 2016 Apple implementó privacidad diferencial en el sistema operativo iOS
10 con el objetivo de recolectar información de los usuarios de forma útil y segura
a la vez para implementar mejoras en las sugerencias de texto, identificar errores
ortográficos, etc. de igual manera fue usada la técnica de privacidad diferencial local.
Como estos ejemplos hay otros y se han ido multiplicando.

La privacidad diferencial se ha convertido en el estándar de referencia en la protec-
ción de datos, influyendo actualmente incluso en el desarrollo de políticas públicas.

1.2. Conceptos básicos
Llamamos base de datos a un conjunto de n-tuplas {x1, . . . ,xn}, donde para

cada i = 1, . . . , n, xi = (xi1, . . . , xik). Pensamos en una tabla del siguiente estilo

Columna 1 Columna 2 . . . Columna k
x1 x11 x12 . . . x1k
x2 x21 x22 . . . x2k
...

...
... . . . ...

xn xn1 xn2 . . . xnk

Cuadro 1.1: Base de datos.

Cada xij es algún tipo de dato computacional (flotante, entero, texto, booleano,
etc.). Una base de datos puede ser incluso un conjunto de tablas, es decir cada xi

puede ser pensado como una matriz con entradas en algún tipo de dato computacio-
nal.

Una base de datos estadística es aquella en la cual no se puede consultar a los
datos particulares, solo se pueden hacer consultas agregadas es decir; únicamente
se tiene acceso a información estadística sobre los datos (media, varianza, conteos,
moda, etc.), en este contexto se denomina curador de los datos al sujeto que puede
observar los datos particulares.

Una base de datos estadística no es protección suficiente a la privacidad de la in-
formación individual de la base, por ejemplo, usando el promedio en subconjuntos
diferenciados por un dato es posible obtener información. En la tabla del cuadro 1
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supongamos que la columna 1 es numérica, usando el promedio para j = 1, . . . , s y
para j = 1, . . . , s+ 1 se puede obtener

x(s+1)j = (s+ 1)

(
1

s+ 1

s+1∑
j=1

xj1

)
− s

(
1

s

s∑
j=1

xj1

)
;

esta en realidad es una consulta muy sencilla, por ejemplo en SQL:

SELECT
(s+1)*(SELECT

AVG(Columna 1)
FROM tabla
WHERE idx < s+2)

-
s*(SELECT

AVG(Columna 1)
FROM tabla
WHERE idx < s+1).

La idea de privacidad diferencial es agregar ruido al resultado de las consultas para
que no sea posible distinguir de que tabla procede pero sin que pierda utilidad para
propósitos estadísticos.



Capítulo 2

Privacidad Diferencial

2.1. Generalidades
Pensemos en una base de datos como un conjunto X no vacío cuyos elementos

son n-tuplas. Una consulta es una función f que toma subconjuntos de la base X y
les asigna algún objeto s. Por ejemplo, pensemos en la siguiente base de datos

X = {(x1, x2, x3)|x1 ∈ {0.25, 0.5, 0.75, 1}, x2 ∈ {A,B,C,D}, x3 = {0, 1}}.

Sea A ⊆ X. La función f : {0, 1}X → {VERDADERO,FALSO} dada por:

f(A) =

{
VERDADERO si x1 > 0.25 y x2 = B,

FALSO en otro caso.

es una consulta.

Para fines de privacidad se busca aleatorizar la salida de las consultas a la base
de datos introduciendo cierto nivel de ruido que permita que los resultados propor-
cionen información útil pero sin que se pueda determinar el dato preciso al hacer
comparaciones entre resultados sobre distintos subconjuntos de la base. Para esto in-
troducimos las siguientes definiciones. Denotamos como {0, 1}X al conjunto potencia
de X.

Definición 2.1. Sea X un conjunto no vacío. Consideremos una distancia d :
{0, 1}X × {0, 1}X → R. Dos conjuntos D, D′ se dicen p-adyacentes o p-vecinos
con respecto a d si d(D,D′) ≤ p. Para p = 1 diremos simplemente conjuntos vecinos
o adyacentes.

Definición 2.2. Sea (Ω,F ,P) un espacio de probabilidad, E ̸= ∅ y (G,G) un espacio
medible. Un algoritmo aleatorizado de E en G es una función A : {0, 1}E ×Ω→ G
tal que para todo A ∈ {0, 1}E, A(A, ·) es una función medible. Denotada como A(A).

Para cada A ⊆ E tenemos una distribución P#A(·) = P[A(A) ∈ ·]. Deseamos que
al observar alguna salida s del algoritmo no sea posible determinar de que distribu-
ción fue muestreado, esto resultará posible si es difícil distinguir entre distribuciones
generadas por conjuntos p-vecinos (para algún p). Entonces necesitamos un número
que nos permita medir qué tanto "se parecen" dos distribuciones.

8



2.1. GENERALIDADES 9

Pero algo más, ya que las técnicas para obtener datos de individuos en una base
estadística se fundamentan en aplicar distintas consultas a subconjuntos vecinos de
la base, requerimos que las consultas aleatorizadas se mantengan indistinguibles al
aplicarse individualmente así como al combinarse. Llamamos posprocesamiento a
esta propiedad. Demos formalidad matemática a esto en la siguiente definición.

Definición 2.3. Sea (Ω,F ,P) un espacio de probabilidad, (G,G), (H,H) espacios
medibles, f : G → H una función medible y P(G) el conjunto de las medidas de
probabilidad sobre G, a una función

DPM(·||·) : P(G)2 → R+

le llamamos medida de privacidad si cumple

DPM(µf ||νf ) ≤ DPM(µ||ν)

para todo µ, ν ∈ P(G) y f : G→ H medible.

Aquí nótese que µf (·) = µ(f−1(·)) es una medida en (H,H), Sin embargo tam-
bién la podemos pensar como una medida en {f−1(B) : B ∈ H} ⊆ P(G), por lo cuál
la expresión DPM(µf ||νf ) esta bien definida, en términos de evaluar elementos en
P(G).

A la propiedad DPM(µf ||νf ) ≤ DPM(µ||ν) le llamamos posprocesamiento. En-
tonces decimos que DPM(·||·) es una medida de privacidad si cumple la propiedad
de posprocesamiento.

Como ejemplo de medida de privacidad tenemos la medida clásica de privacidad
diferencial:

D∞(µ||ν) = sup
B∈H

log
µ(B)

ν(B)
.

Ya que contamos con una manera de medir la privacidad podemos determinar que
tanto una consulta o una combinación de consultas aleatorizadas mantienen la priva-
cidad en una base estadística, es decir, establecer una manera de calibrar algoritmos
en términos de privacidad.

Definición 2.4. Sea (Ω,F ,P) un espacio de probabilidad, E ̸= ∅, (G,G) un espacio
medible, d una distancia en {0, 1}E, DPM una medida de privacidad en P(G). Un
algoritmo aleatorizado A de E en G es (ε

IN
, ε

OUT
)-privado si para todo par D,D′ ⊆

E tales que d(D,D′) ≤ ε
IN

se tiene DPM(A(D)||A(D′)) ≤ ε
OUT

.

Equivalentemente un algoritmo aleatorizado A es (ε
IN
, ε

OUT
)-privado si

sup
d(D,D′)≤ε

IN

DPM(A(D)||A(D′)) ≤ ε
OUT

.

En general con las bases estadísticas se busca hacer indistinguible el resultado de
dos consultas aplicadas a conjuntos adyacentes (usando la distancia de diferencia
simétrica), en estos casos ε

IN
= 1, y decimos que A es ε-privado si cumple con

la definición, donde ε
OUT

= ε. Si dos conjuntos D,D′ son adyacentes escribimos
D ∼ D′, ahora para ε

IN
= 1, y DPM = D∞ un algoritmo aleatorizado A es ε-

privado si

sup
D∼D′

sup
S∈G

log
P[A(D) ∈ S]
P[A(D′) ∈ S]

≤ ε,

que es la definición clásica de privacidad.
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2.2. Privacidad diferencial clásica
Definición 2.5 (Privacidad diferencial clásica). Un algoritmo aleatorizado A es ε-
diferencial privado, si para todo par de conjuntos adyacentes D, D′ ∈ {0, 1}E y para
todo S ⊆ G se cumple:

log
P[A(D) ∈ S]
P[A(D′) ∈ S]

≤ ε.

Para revisar ejemplos de algoritmos ε-privados es necesario introducir un par de
conceptos.

Para una consulta f : {0, 1}E → Rn la sensibilidad global de f está definida co-
mo

△
GS
f = sup

D∼D′
||f(D)− f(D′)||1.

Este número es importante en términos de algoritmos aleatorizados ε-privados, pues
los algoritmos más usados consisten en sumar ruido a la consulta por ejemplo si
este ruido es laplaciano, o gaussiano, la sensibilidad representa el desplazamiento de
la media de la distribución de un algoritmo respecto de otro. Veamos el algoritmo
laplaciano.

Sea f = (f1, . . . , fn) una consulta como la antes mencionada, definimos el meca-
nismo de Laplace como A : {0, 1}E × Ω→ Rn tal que

A(D,ω) = f(D) + (X1, . . . , Xn)(ω),

donde lasXi son independientes, idénticamente distribuidas conXi ∼ Lap
(
0, n△GSf

ε

)
y ε > 0. Tenemos entonces que A(D)i ∼ Lap

(
f(D)i,

n△GSf
ε

)
. Entonces, la función

de densidad de A(D) está dada por

ρA(D)(r) =
n∏

i=1

ε

2n△GSf
exp

{
−ε|ri − f(D)i|

n△GSf

}
, r ∈ Rn.

Tomamos ahora ρA(D′) y hacemos el cociente

ρA(D)(r)

ρA(D′)(r)
=

n∏
i=1

exp

{
ε

n△GSf
(|ri − f(D′)i| − |ri − f(D)i|)

}
,

tomando en cuenta |f(D)i − f(D′)i| ≥ |f(D′)i − ri| − |f(D)i − ri|, escribimos

ρA(D)(r)

ρA(D′)(r)
≤

n∏
i=1

exp

{
ε

n△GSf
(|f(D′)i − f(D)i|)

}
.

Luego |f(D′)− f(D)| ≤ △
GS
f , por tanto

ρA(D)(r)

ρA(D′)(r)
≤

n∏
i=1

exp
{ ε
n

}
= exp{ε}.

Integrando, tenemos para todo S ∈ B(Rn)∫
S

ρA(D)(r)dr ≤ exp{ε}

∫
S

ρA(D′)(r)dr.
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Lo cual resulta en que

sup
S∈B(Rn)

log
P[A(D) ∈ S]
P[A(D′) ∈ S]

≤ ε.

Ejemplo 2.1. Consideremos el conjunto

D = {88.68, 70.65, 38.45, 58.42, 29.32, 11.11, 60.37, 19.91, 52.04, 96.39},

y D′ = D − {96.39}, f la consulta que obtiene el promedio, A el algoritmo alea-
torizado que suma un ruido laplaciano X ∼ Lap(0, 1), en la gráfica tenemos las
distribuciones A(D) y A(D′).

Figura 2.1: Distribuciones de los algoritmos A(D), A(D′).

Otro algoritmo aleatorizado muy usado es el gaussiano, la idea es la misma que
para el laplaciano, A(D) = f(D) +N(0, Iσ2).



Capítulo 3

Divergencia de Renyi

3.1. Introducción
Para comprender la funcionalidad de la herramienta presentada en este capítulo,

daremos un breve repaso a conceptos básicos de teoría de la información pensando
en lectores poco familiarizados con el tema.

Supongamos que se tiene un sistema de mensajes codificados en matrices (aij) de
5× 2, donde cada elemento de cada matriz es un cuadro, los cuadros toman colores
como valores, pueden ser negros, amarillos, azules o rojos; los mensajes se envían en
dígitos dibujados en la matriz. Tomemos por ejemplo un mensaje de dos dígitos:

Dígito 1: ai,j = b si y sólo si j = 1,

Dígito 2: ai,j = n si j = 2 o i ∈ {1, 3, 5},

donde n quiere decir que el cuadro es negro, a que el cuadro es amarillo y b que el
cuadro es azul y v cuadro verde.

Supongamos que este código se transmite a través de un canal de información que
sólo transmite dos valores; por ejemplo 0 y 1, una manera de hacer llegar los datos
correctos es usando preguntas, se inicia la comunicación y por cada cuadro de la
matriz tendremos dos dígitos de ceros y unos, el primero corresponde a la pregunta:
¿Este cuadro es negro o amarillo? si la respuesta es afirmativa se pregunta ¿El cua-
dro es negro? si la respuesta no es afirmativa se pregunta ¿El cuadro es azul? No se
necesitan más preguntas. Para cada pregunta el valor 1 es afirmativo y el 0 negati-
vo. Así que para comunicar que el cuadro es negro se envía 11, para comunicar que
es amarillo 10, para azul 01, para rojo 00. Para cada color necesitamos dos preguntas.

Podemos interpretar que el costo de transmitir un mensaje con este sistema es
de dos preguntas con respuesta binaria por cuadro, en el lenguaje de teoría de la
información, cada cuadro contiene 2 bits de información.

Consideremos el caso cuando el código está configurado de tal manera que en 16
cuadros transmitidos 8 veces tenemos negro, 4 veces amarillo, 2 azul y 2 rojo. Con
esta formulación elegiremos otro sistema para decodificar la información, esta vez se
impone un orden en la sucesión de las preguntas.

12
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1.- ¿El color es negro?

2.- ¿Es amarillo?

3.- ¿Es azul?

El orden esta basado en la frecuencia de aparición de cada color en este sistema. Así
para el color negro necesitamos una pregunta, para el amarillo 2, y para los colores
azul y rojo 3. En promedio el número de preguntas en este sistema es el siguiente:

1

2
∗ 1 + 1

4
∗ 2 + 1

8
∗ 3 + 1

8
∗ 3 = 1.75

Mientras que con el sistema anterior el promedio de preguntas es 2, en este caso
diremos que el cuadro en el segundo sistema contiene 1.75bits. Nótese que el número
de preguntas binarias (con dos posibles respuesta únicamente) asociado a cada color
está relacionado con la frecuencia relativa del mismo

frecuencia relativa = 2(# preguntas).

En términos de probabilidades, supongamos queX : Ω→ E es una variable aleatoria
donde E es a lo más numerable, con función de masa de probabilidad p(x) = P[X =
x]. La cantidad de información en bits de X se define como:

H(X) = −
∑
x∈E

p(x) log2 p(x).

Esta definición fue propuesta en 1948 por Claude Shannon [Sha48] este número se
denomina también entropía de Shannon, o simplemente entropía.

Consideremos nuevamente una variable aleatoria X como arriba, esta vez pensán-
dola sobreyectiva para hacer claro el argumento, el número de preguntas binarias
determinado por la distribución de X para llegar al elemento x es log2(P[X = x])
consideremos ahora otra variable aleatoria Y con el mismo dominio e imagen, tam-
bién sobreyectiva, la distribución de Y impone un sistema de preguntas sobre E, es
decir para llegar a y ∈ Im(Y ) necesitamos log2(P[Y = y]) preguntas. Consideremos
ahora una función Z tal que a cada elemento x ∈ E le asigna su número de bits con
respecto a la distribución de Y . El valor esperado de preguntas para cada x ∈ E
con respecto a la distribución de X está dado por:

H(X;Y ) := −
∑
x∈E

p(x) log2 q(x).

Donde p es la masa de probabilidad de X y q la de Y . Llamamos a H(X;Y ) la
entropía cruzada X a Y . Que podemos interpretar como la cantidad de información
en bits en un sistema en el cual los elementos de E tienen una frecuencia relativa dada
por la distribución de X con un sistema de preguntas diseñado con la distribución
de Y . Tenemos, también la entropía relativa de X a Y :

DKL(X||Y ) = H(X;Y )−H(X).

Que se interpreta cómo la pérdida de información al establecer un sistema de pre-
guntas dado por una distribución distinta a la real de los datos. La notación es en
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honor a S. Kullback y R. A. Leibler quienes propusieron esta definición en 1951 [S
K51].
Redefinamos la entropía, la entropía cruzada y la entropía relativa en términos de
distribuciones de probabilidad y cambiando el logaritmo base 2 (debido a la natu-
raleza binaria de las preguntas) por logaritmo natural; tenemos para distribuciones
de probabilidad P , Q:

H(P ) := −
∑

x P (x) log P (x).

H(P ;Q) := −
∑

x P (x) log Q(x).

DKL(P ||Q) := H(P ;Q)−H(P ) =
∑

x P (x) log
P (x)
Q(x)

.

En términos de distribuciones se hace evidente que para que se pueda calcular la
entropía relativa necesitamos que Q(x) = 0 siempre que P (x) = 0, es decir Q≪ P .
Una generalización de la entropía relativa se da por la siguiente expresión:

Dα(P ||Q) =
1

α− 1
log

[∑
x

(
P (x)

Q(x)

)α

Q(x)

]
.

Para α ∈ (0, 1) ∪ (1,∞), y distribuciones P , Q, tales que Q ≪ P . Tenemos que
ĺımα→1Dα(P ||Q) = DKL(P ||Q)([Erv10] teorema 5 ). La interpretación de esta es-
pecie de nueva medida de entropía es en el mismo sentido que en el de la entropía
relativa; sólo que aquí el parámetro α nos permite calibrar la sensibilidad de la
medida; conforme α es mayor, es mas sensible a diferencias entre las distribucio-
nes. Esta medida de entropía recibe el nombre de divergencia de Renyi, al fijar dos
distribuciones esta es una función creciente con respecto a α.

Ejemplo 3.1. Consideremos dos distribuciones:
p = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
q = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.11, 0.09).

Figura 3.1: Valor de la divergencia de Renyi Dα(p||q) en función del parámetro α

Dα(P ||Q) recibe su nombre en honor a Alfred Renyi quien la propuso por primera
vez en 1961 [Ren61]. Veamos ahora una definición más general de esta herramienta
en términos de teoría de la medida.
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Definición 3.1 (Divergencia de Renyi). Considérese un espacio medible (Ω,F),
m, ν, µ medidas sobre (Ω,F) tales que µ≪ ν ≪ m, sea α ∈ (0, 1)∪ (1,∞). Se define
la α-divergencia de Renyi entre µ y ν como:

Dα (µ||ν) =
1

α− 1
log

∫ (
dµ

dm

)α(
dν

dm

)1−α

dm.

Observación 3.1. Dentro de la integral estamos haciendo referencia a la derivada
de Radón-Nikodym.

Observación 3.2. Ya que
(dµ/dm)

(dν/dm)
=
dµ

dν
,

Podemos escribir usando cambio de variable:

Dα (µ||ν) =
1

α− 1
log

∫ (
dµ

dν

)α

dν.

Una importante observación en el contexto de privacidad diferencial es que

ĺım
α→∞

Dα(µ||ν) = sup
D∈F

log
µ(D)

ν(D)
.

Tenemos pues que ĺımα→∞Dα(µ||ν) = D∞(µ||ν), así este límite de la divergencia de
Renyi coincide con la medida clásica de privacidad diferencial. En adelante conside-
raremos α > 1 que es el parámetro usado en privacidad diferencial.

3.2. Propiedades
Lema 3.1 (Preprocesamiento). [Erv10] Sea (Ω,F) espacio de medida, µ, ν medi-
das sobre este espacio; G una sub-sigma álgebra de F . Si se denotan µ|G, ν|G las
correspondientes restricciones, entonces se cumple:

Dα (µ|G || ν|G) ≤ Dα (µ||ν) .

Demostración.

Dα (µ|G || ν|G) =
1

α− 1
log

∫ (
dµ|G
dν|G

)α

dν.

Por el lema A.9 del apéndice continuamos con

Dα (µ|G || ν|G) =
1

α− 1
log

∫ (
E

[
dµ

dν
|G
])α

dν.

Usando la desigualdad de Jensen

Dα (µ|G || ν|G) ≤
1

α− 1
log

∫
E

[(
dµ

dν

)α

|G
]
dν.
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Finalmente por definición de esperanza condicional,

Dα (µ|G || ν|G) =
1

α− 1
log

∫ (
dµ

dν

)α

dν

= Dα (µ||ν) .

Observación 3.3. El preprocesamiento nos dice que la pérdida de información de
una distribución ν a otra µ, cuando estas están sobre subfamilias de la σ-álgebra
original de conjuntos medibles, no rebasa la pérdida en el conjunto de datos completo.

La siguiente proposición presenta dos propiedades importantes de la divergencia
de Renyi. En la primera; si tenemos dos conjuntos de datos S1, y S2, donde actuando
sobre el primero tenemos las distribuciones µ y ν, y sobre el segundo µ′ y ν ′ en el
conjunto de datos S1⊗S2 la pérdida de información de ν×ν ′ a µ×µ′ es igual a sumar
las perdidas de información de ν a µ y de ν ′ a µ′ en S1 y en S2 respectivamente. Con
respecto a la segunda propiedad llamada Posprocesamiento tenemos que la pérdida
de información no se incrementa al darle un procesamiento a los datos a través de
una función determinista f .

Proposición 3.1. Lo siguiente se cumple para todo α ∈ (1,∞), y distribuciones
µ, µ

′
, ν, ν

′:

Aditividad: Dα(µ× µ
′ ||ν × ν ′

) = Dα(µ||ν) +Dα(µ
′||ν ′).

Posprocesamiento: Para cualquier función determinista f ,

Dα (f(µ)||f(ν)) ≤ Dα(µ||ν),

donde f(µ) es la distribución de f(X) con X ∼ µ.

Demostración. Aditividad:

Dα (µ× µ′||ν × ν ′) = 1

α− 1
log

∫ (
d(µ× µ′)/d(m×m)

d(ν × ν ′)/d(m×m)

)α
d(ν × ν ′)
d(m×m)

d(m×m)

=
1

α− 1
log

∫ (
d(µ× µ′)

d(ν × ν ′)

)α
d(ν × ν ′)
d(m×m)

d(m×m)

=
1

α− 1
log

∫ (
dµ

dν

)α(
dµ′

dν ′

)α
dν

dm

dν ′

dm
d(m×m)

=
1

α− 1
log

∫ (
dµ

dν

)α
dν

dm
dm

∫ (
dµ′

dν ′

)α
dν ′

dm
dm


=

1

α− 1
log

∫ (
dµ

dν

)α
dν

dm
dm+

1

α− 1
log

∫ (
dµ′

dν ′

)α
dν ′

dm
dm

= Dα(µ||ν) +Dα(µ
′||ν ′).
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Posprocesamiento:
Aquí usaremos la propiedad preprocesamiento; que dice lo siguiente:
Si P,Q son distribuciones sobre el espacio medible (Z,B(Z)) con G ≤ F .
Entonces:

Dα(P |G || Q|G) ≤ Dα(P ||Q).

Tenemos para B ∈ B(Z), f(µ)[B] = µ[f−1B] donde µ es la distribución de X.
Podemos poner entonces:

Dα(f(µ)||f(ν)) = Dα(µ|σ(f)||ν|σ(f)) ≤ Dα(µ||ν).

La aditividad es válida para cualquier número de factores en las entradas de
la divergencia de Renyi. Es decir para todo número natural N , para distribucio-
nes µ1, µ2, . . . , µN , ν1, . . . , νN sobre conjuntos de datos S1, . . . , SN consideramos las
distribuciones

⊗N
n=1 µi,

⊗N
n=1 νi sobre el conjunto de datos

⊗N
n=1 Si. Bajo estas

condiciones tenemos:

Dα

(
N⊗

n=1

µi

∣∣∣∣∣
∣∣∣∣∣

N⊗
n=1

νi

)
=

N∑
n=1

Dα (µi||νi) .

La prueba de esto es por inducción, el paso inductivo es una calca de la prueba que
se ha hecho para la propiedad de aditividad en el caso de dos distribuciones.

Observación 3.4. Dado que la divergencia de Renyi cumple con la propiedad de
posprocesamiento, tenemos que es una medida de privacidad.



Capítulo 4

Distancia Wasserstein

La distancia de Wasserstein surge como una herramienta importante en el análisis
de la privacidad diferencial de Renyi. A diferencia de otras funciones que comparan
distribuciones, la distancia de Wasserstein captura no solo las diferencias en masa
entre distribuciones, sino también el "costo" de transportar esa masa, lo que resulta
útil al analizar algoritmos estocásticos en términos de su estabilidad frente a per-
turbaciones. En el contexto de la privacidad de Renyi, esta distancia se utiliza para
acotar la divergencia entre salidas inducidas por bases de datos vecinas, ofreciendo
una forma de medir la fuga de información. Además, su simetría y su compatibi-
lidad con técnicas de optimización convexa la convierten en una herramienta muy
útil para analizar mecanismos privados con mejores garantías de privacidad.

4.1. Acoplamientos y transporte

Definición 4.1. Consideremos (Ω1,F1,P1), (Ω2,F2,P2) espacios de probabilidad
(Z1, E1), (Z2, E2) espacios medibles y X1 : Ω1 → Z1, X2 : Ω2 → Z2 objetos aleatorios.
Por un acoplamiento entre X1 y X2 entendemos un objeto aleatorio (X̂1, X̂2) sobre
el espacio (Ω̂, F̂ , P̂) que toma valores en el espacio medible (Z1×Z2, E1⊗E2), y que
además cumple:

X̂1
d
= X1 y X̂2

d
= X2.

Pensemos en las distribuciones µ(·) = P1(X1 ∈ ·), ν(·) = P2(X2 ∈ ·) y γ(·) =
P̂((X̂1, X̂2) ∈ ·), bajo las condiciones de la definición de arriba decimos que γ es
un acoplamiento de µ y ν y escribimos γ ∈ Γ(µ, ν). Donde Γ(µ, ν) es el conjunto
de todos los acoplamientos entre µ y ν, el cuál no es vacío porque siempre esta la
medida producto µ× ν.

Los acoplamientos también son llamados planes de transferencia . En este con-
texto γ se piensa como una medida de la "transferencia" de conjuntos en Z1 hacia
Z2. Estamos pensando aquí que se esta "transportando", o también transformando
el conjunto Z1 en el conjunto Z2, y γ mide como se reparte Z1 en Z2, es decir
γ(A × Z2) = µ(A) dice cuanto de A llega a Z2, γ(Z1 × B) = ν(B) dice cuanto de
Z1 se ha puesto en B, y γ(A×B) cuanto de A se ha puesto en B.

Ejemplo 4.1. Supongamos que se tienen los conjuntos U = {x1, x2, x3, x4} y V =
{y1, y2} con distribuciones p

U
= (0.75, 0.10, 0.10, 0.05), p

V
= (0.75, 0.25) un acopla-

18
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miento es la medida producto p
U
× p

V
. Este plan de transferencia queda esque-

matizado en la siguiente tabla:

U/V y1 y2 V
x1 0.5625 0.1875 0.75
x2 0.075 0.025 0.10
x3 0.075 0.025 0.10
x4 0.0375 0.0125 0.05
U 0.75 0.25 1

Cuadro 4.1: En este caso el plan de transferencia queda determinado por la cantidad
de xi que se pondrá en yj

.

La cantidad de x1 que se esta transfiriendo a V se reparte sobre los elementos
de V , en este caso y1, y2, según el plan de transferencia dado por pU × pV , es decir
la cantidad de x1 transferida a y1 es

(p
U
× p

V
)({x1} × {y1}) = p

U
(x1)pV

(y1) = 0.5625,

mientras que la cantidad de x1 transferida a y2 es

(p
U
× p

V
)({x1} × {y2}) = p

U
(x1)pV

(y2) = 0.1875.

Para cualquier plan de transferencia p la cantidad de x1 que se transfiere a V es la
misma: p(x1 × V ) = p|U (x1)=0.75.

La noción de transporte se construye a partir del concepto de plan de trans-
ferencia , consideremos el mismo conjunto del ejemplo 3.1, ahora introduciremos
una función c : U × V → R+ que se puede pensar como el costo de transportar la
medida; por ejemplo c(x1, y2) es el costo de transportar la medida de x1 a y2. De esta
manera podemos obtener la media del costo ponderada por la distribución (plan de
transferencia) p

U
× p

V
: ∑

i,j

c(xi, yj)(pU
× p

V
)(xi, yj).

Al par de medidas p
U
, p

V
se le asocia el número:

ı́nf
γ∈Γ(p

U
,p

V
)

∑
i,j

c(xi, yj)γ(xi, yj).

A este número lo pensamos como la manera óptima de transportar la medida p
U

en
la medida p

V
con respecto a la función de costo c.

Más en general si X y Y son espacios métricos completos y separables, µ y ν dis-
tribuciones de Borel sobre X y Y respectivamente, c : X × Y → R+ una función
continua. El costo total de transportar µ a ν asociado a γ ∈ Γ(µ, ν) con respecto a
c se define como:

C(γ) =

∫
X×Y

c(x, y)dγ(x, y).
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Nosotros nos colocaremos en una situación mas específica. Sea Z un espacio de
Banach, tomemos la función de costo como la distancia inducida por la métrica; si
µ y ν son dos distribuciones de Borel sobre Z, el costo total asociado a γ ∈ Γ(µ, ν)
se calcula:

C(γ) =

∫
Z2

||x− y||dγ(x, y).

Partiendo de estos conceptos podemos obtener una distancia sobre un conjunto de
medidas.

4.2. Espacio de Wasserstein
Consideremos P(Z) el conjunto de las distribuciones de Borel sobre Z. Definimos

el p-espacio de Wasserstein en Z como:

Wp(Z) =

µ ∈ P(Z) :
∫

Z

||x||pdµ(x) <∞

 .

En la siguiente definición tenemos una distancia sobre este conjunto la cuál lo con-
vierte en un espacio métrico [Vil03].

Definición 4.2. Sea Z espacio de Banach, p ≥ 1 . Para µ, ν ∈ P(Z) se define:

Wp(µ, ν) :=

 ı́nf
γ∈Γ(µ,ν)

∫
Z2

||x− y||pdγ(x, y)

 1
p

.

En este trabajo estaremos usando un caso límite de esta distancia. La llamamos
distancia ∞-Wasserstein.

Definición 4.3. Sea Z espacio de Banach. Para µ, ν ∈ P(Z) se define:

W∞(µ, ν) := ı́nf
γ∈Γ(µ,ν)

ess sup
(X,Y )∼γ

||X − Y ||.

En el siguiente lema se prueba la conexión entre p-distancia y la distancia infinito.

Lema 4.1. Sean µ, ν ∈ P(Z). Se cumple:

ĺım
p→∞

Wp(µ, ν) = W∞(µ, ν).

Demostración. Para µ = ν es inmediato ya que para todo p se tiene

Wp(µ, ν) = 0 = W∞(µ, ν).

Consideremos entonces µ ̸= ν, sea γ ∈ Γ(µ, ν), ε > 0, y Eε = {(x, y) ∈ Z2 :
||x− y|| ≥ ess sup(X,Y )∼γ ||X − Y || − ε}; para (x, y) ∈ Eε tenemos:

||x− y||p ≥

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)p

.
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Integrando respecto a γ:∫
Z

||x−y||pdγ(x, y) ≥

∫
Eϵ

||x−y||pdγ(x, y) ≥

∫
Eε

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)p

dγ(x, y).

Obteniendo el ínfimo sobre los acoplamientos, y luego raíz p-ésima:

Wp(µ, ν) ≥

 ı́nf
γ∈Γ(µ,ν)

∫
Eε

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)p

dγ(x, y)

 1
p

=

[
ı́nf

γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)p

γ(Eε)

] 1
p

≥

[
ı́nf

γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)p

ı́nf
γ∈Γ(µ,ν)

γ(Eε)

] 1
p

=

[
ı́nf

γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)p] 1
p [

ı́nf
γ∈Γ(µ,ν)

γ(Eε)

] 1
p

= ı́nf
γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)
ı́nf

γ∈Γ(µ,ν)
γ(Eε)

1
p .

Tomamos límite inferior y considerando que γ(Eε) ∈ (0,∞) y tomando ε lo
suficientemente pequeño para que

(
ess sup(X,Y )∼γ ||X − Y || − ε

)
> 0:

ĺım ı́nf
p↑∞

Wp(µ, ν) ≥ ĺım ı́nf
p↑∞

ı́nf
γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y || − ε

)
γ(Eε)

1
p

= ı́nf
γ∈Γ(µ,ν)

ess sup
(X,Y )∼γ

||X − Y || − ε.

Llevando ε a 0 este desaparece de la desigualdad:

ĺım ı́nf
p↑∞

Wp(µ, ν) ≥ ı́nf
γ∼Γ(µ,ν)

ess sup
(X,Y )∼γ

||X − Y || = W∞(µ, ν).

Por otro lado; para γ ∈ Γ(µ, ν), si (X, Y ) ∼ γ tenemos que γ-casi seguramente
||X − Y || ≤ ess supγ||X − Y ||, luego para p > q:

||X − Y ||p−q||X − Y ||q ≤

(
ess sup
(X,Y )∼γ

||X − Y ||

)p−q

||X − Y ||q.

Integrando con respecto a la medida γ:∫
Z

||x− y||p−q||x− y||qdγ(x, y) ≤

∫
Z

(
ess sup
(X,Y )∼γ

||X − Y ||

)p−q

||x− y||qdγ(x, y)

=

(
ess sup
(X,Y )∼γ

||X − Y ||

)p−q ∫
Z
||x− y||qdγ(x, y).



22 CAPÍTULO 4. DISTANCIA WASSERSTEIN

Luego tomando raíz p-ésima:∫
Z

||x− y||p−q||x− y||qdγ(x, y)

 1
p

≤

(
ess sup
(X,Y )

||X − Y ||

) p−q
p

∫
Z

||x− y||qdγ(x, y)

 1
p

.

Tomamos ínfimo sobre los acoplamientos de µ y ν:

ı́nf
γ∈Γ(µ,ν)

(∫
Z
||x− y||p−q||x− y||qdγ(x, y)

) 1
p

≤ ı́nf
γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y ||

) p−q
p

∫
Z

||x− y||qdγ(x, y)

 1
p

≤ ı́nf
γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y ||

) p−q
p

ı́nf
γ∈Γ(µ,ν)

∫
Z

||x− y||qdγ(x, y)

 1
p

.

Podemos escribir:

Wp(µ, ν) ≤ ı́nf
γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||x− y||

) p−q
p

Wq(µ, ν)
q
p

≤ ı́nf
γ∈Γ(µ,ν)

ess sup
(X,Y )∼γ

||X − Y || ı́nf
γ∈Γ(µ,ν)

(
ess sup
(X,Y )∼γ

||X − Y ||

)− q
p

Wq(µ, ν)
q
p .

Tomando límite superior sobre p:

ĺım sup
p↑∞

Wp(µ, ν) ≤W∞(µ, ν).

Concluimos:
ĺım
p→∞

Wp(µ, ν) = W∞(µ, ν).

Es de ayuda recordar que en notación de conjuntos podemos escribir:

W∞(µ, ν) := ı́nf
{
||x− y||L∞(γ) : γ ∈ Γ(µ, ν)

}
.

Veamos ahora que W∞(µ, ν) es una distancia en P∞(Z), que es el conjunto de todas
las medidas de soporte compacto sobre Z:

1. Supongamos µ ̸= ν, entonces existe A subconjunto medible de Z tal que
µ(A) ̸= ν(A), sin pérdida de generalidad suponemos µ(A)− ν(A) > 0. Ya que
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||x− y||L∞(Z×A,γ) ≤ ||x− y||L∞(Z×Z,γ); donde para ||x− y||L∞(Z×A,γ) tenemos:

γ [(x, y) ∈ Z × A : ||x− y|| > 0] = γ [Z × A− {(y, y) : y ∈ A}]
= γ [Z × A]− γ [{(y, y) : y ∈ A}]
≥ µ(A)− γ [A×Z]
= µ(A)− ν(A) > 0.

Por tanto ||x−y||L∞(Z×A,γ) > 0 para todo γ ∈ Γ(ν, µ), así para todo γ ∈ Γ(ν, µ)
W∞(ν, µ) > 0

2. Para todo p ≥ 1 tenemos que Wp(µ, µ) = 0, de donde W∞(µ, µ) = 0.

3. Para revisar la simetría tenemos:

W∞(ν, µ) = ĺım
p→∞

Wp(ν, µ) = ĺım
p→∞

Wp(µ, ν) = W∞(µ, ν).

4. Desigualdad triangular: Para todo µ, ν, ζ ∈ P(Z) se tiene:

W∞(ν, µ) = ĺım
p→∞

Wp(ν, µ) ≤ ĺım
p→∞

(Wp(ν, ζ) +Wp(ζ, µ)) = W∞(ν, ζ)+W∞(ζ, µ).

Cerramos esta sección con el siguiente lema, el cuál es uno de los soportes impor-
tantes de los resultados principales de este trabajo.

Lema 4.2. Los siguientes enunciados son equivalentes para cualesquiera distribu-
ciones µ, ν sobre Z.

1) W∞(µ, ν) ≤ s.

2) Existe un vector aleatorio (U, V ) tal que U ∼ µ, V ∼ ν y P [||U − V || ≤ s] = 1.

3) Existe un vector aleatorio (U, V ) tal que U ∼ µ, U+W ∼ ν y P [||W || ≤ s] = 1.

Demostración. 1) ⇒ 2):
Tenemos que:

ı́nf
γ∈Γ(µ,ν)

ess sup
(X,Y)∼ γ

||X − Y || ≤ s

implica que para todo ε > 0 existe una medida γ ∈ Γ(µ, ν) tal que ess sup ||U−V || ≤
s + ε con (U, V ) ∼ γ, donde U ∼ µ, y V ∼ ν, tenemos que ı́nf{x ∈ R : P{ω ∈ Ω :
||U(ω)− V (ω)|| > x} = 0} ≤ s+ ε de donde tenemos que existe x ∈ R, x ≤ s+ 2ε
tal que P{ω ∈ Ω : ||U(ω)− V (ω)|| > x} = 0. Así cuando P es una medida de proba-
bilidad tenemos P[||U − V || ≤ s+ 2ε] = 1. para todo ε > 0. Finalmente tomando el
límite ε→ 0 se concluye P[||U − V || ≤ s] = 1.

2)⇒3):
Definimos W = V − U , entonces V = W + U , y por tanto W + U ∼ ν y además
P[||W || ≤ s].

3)⇒1)
Definimos V = U +W ; ya que P[||U − V || ≤ s], tenemos que P[||U − V || > s] = 0
por tanto ı́nf{x ∈ R : P[||U − V || > x] = 0} ≤ s, es decir ess sup ||U − V || ≤ s, y así
tenemos W∞(µ, ν) ≤ s.



Capítulo 5

Garantías de Privacidad en ICR

5.1. Algoritmos iterativos
En aprendizaje automático (Machine learning) es común encontrar algoritmos

iterativos, es decir que actualizan progresivamente sus parámetros en una sucesión
de iteraciones. En cada iteración el algoritmo usa un dato, o un cierto subconjunto
de datos del conjunto de entrenamiento para lograr una dirección de mejora y así ir
ajustando los parámetros del modelo.

En este contexto se ha demostrado que si no se publican los resultados parciales
del algoritmo iterativo, la privacidad mejora [Fel+18]. Más en específico se esta pen-
sando en algoritmos aleatorizados construidos usando funciones contractivas como
por ejemplo el descenso ruidoso del gradiente.

Ejemplo 5.1. El algoritmo "descenso ruidoso del gradiente" hace más eficiente la
exploración del espacio de parámetros, evitando que la optimización se estanque en
mínimos locales o zonas planas, además de prevenir o regular el sobre ajuste. La
actualización de parámetros de este algoritmo es la siguiente:

M(w) = w − η∇L(w) + ζ.

Donde η ∈ R es el radio de aprendizaje, ζ el ruido es una variable aleatoria y ∇ es
el gradiente.

Llamamos ruido a una variable aleatoria X ∼ ζ o a su distribución, y deno-
minamos sucesión de ruidos a una sucesión de variables aleatorias {Xn}n∈I o de
distribuciones {ζn}n∈I mutuamente independientes.

Definición 5.1 (Contracción). Para un espacio de Banach (Z, || · ||) una función
ϕ : Z → Z se dice que es una contracción si para todo x, y ∈ Z

||ϕ(x)− ϕ(y)|| ≤ ||x− y||.

Una definición general de los algoritmos en consideración es la siguiente:

Definición 5.2. [Iteración de contracciones con ruido (ICR)] Dado un estado alea-
torio inicial X0 ∈ Z una sucesión de contracciones {ϕt : Z → Z}t≤T , y una sucesión
de ruidos {ζt}t≤T definimos la iteración de contracciones con ruido (ICR) con la si-
guiente regla de actualización:

Xt = ϕt(Xt−1) + Zt, t ∈ {1, . . . , T}.

24
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Donde Zt ∼ ζt para cada t ∈ {1, . . . , T}. Después de T pasos obtenemos la variable
aleatoria XT la cual será denotada como ICRT

(
X0, {ϕt}t≤T , {ζt}t≤T

)
.

5.2. Privacidad en algoritmos iterativos
Retomamos la divergencia de Renyi (definición 3.1) en la observación 3.4 resalta-

mos que esta divergencia es una medida de privacidad, por tanto hay una versión de
algoritmo aleatorizado privado (definición 2.2) para esta medida, sólo cabe destacar
lo siguiente; para cada α tenemos una divergencia de Renyi distinta. Se plantea una
definición de privacidad diferencial adaptada para incorporar a α como parámetro.

Definición 5.3. [Privacidad diferencial de Renyi (RDP)] Sea α ∈ [1,∞], ε > 0, A
un algoritmo aleatorizado es (α, ε)-RDP si

sup
D∼D′

Dα(A(D)||A(D′)) ≤ ε.

Para estudiar la privacidad (medida con Dα) en algoritmos ICR introducimos las
siguientes definiciones. La idea es captar la distribución de salida en cada iteración,
más en específico la distribución pushforward inducida por un mapeo contractivo o
contracción.

Definición 5.4 (Divergencia de Renyi deslizada). Sean µ y ν distribuciones de-
finidas en un espacio de Banach (Z, || · ||). Para parámetros z ≥ 0 y α ≥ 1, la
divergencia z-deslizada de Renyi entre µ y ν se define como:

D(z)
α (µ||ν) = ı́nf

µ′∈BW∞ (µ,z)
Dα(µ

′||ν).

Donde BW∞(µ, z) es la bola cerrada con centro en µ y radio z con respecto a la
distancia W∞.

Figura 5.1: Vecindad de radio z en el espacio métrico (P∞(Z),W∞).
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Figura 5.2: Así se ven las densidades dentro de una vecindad de una distribución
N(0, 1), las distribuciones en la vecindad no necesariamente son normales, si no
que corresponden a distribuciones que están cerca en términos de la distancia en el
espacio donde las variables aleatorias toman valores.

Proposición 5.1. La divergencia deslizada de Renyi satisface las siguientes condi-
ciones para cualquier par de medidas µ, ν y α ∈ (1,∞).

Monotonía: Para z ∈ (0, z′), D(z′)
α (µ||ν) ≤ D

(z)
α (µ||ν).

Desplazamiento: Para todo x ∈ Z, D(||x||)
α (µ||ν) ≤ Dα(µ ∗ x||ν) donde x

denota la distribución de la variable aleatoria constante x, y ∗ la operación
convolución.

Demostración. Para monotonía tenemos; ya que z < z′, BW∞(µ, z) ⊆ BW∞(µ, z′)
por tanto:

ı́nf
µ′∈BW∞ (µ,z)

Dα(µ
′||ν) ≤ ı́nf

µ′∈BW∞ (µ,z′)
Dα(µ

′||ν).

Luego para el desplazamiento notemos que

W∞(µ, µ ∗ x) = ı́nf
γ∈Γ(µ,µ∗x)

ess sup
(X,Y )∼γ

||X − Y ||

≤ ess sup
(X,Y )∼(X,X+x)

||X − Y ||

= ess sup
(X,Y )∼(X,X+x)

||X − (X + x)||

= ess sup
(X,Y )∼(X,X+x)

||x||

= ||x||.

Por tanto µ ∗ x ∈ BW∞(µ, ||x||), así

ı́nf
µ′∈BW∞ (µ,||x||)

Dα(µ
′||ν) ≤ Dα(µ ∗ x||ν).
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Figura 5.3: µ ∗ x está dentro de la vecindad de radio ||x|| alrededor de µ.

Definición 5.5. Para una distribución ζ sobre un espacio de Banach (Z, || · ||)
definimos la magnitud de ruido de radio a como:

Rα (ζ, a) = sup
x:||x||≤a

Dα (ζ ∗ x||ζ) .

La magnitud de ruido de radio a nos permitirá poner una cota a la privacidad
de un algoritmo ICR en función de los ruidos involucrados en su construcción.

Lema 5.1 (Reducción de ruido). Sean z ≥ 0, µ, ν y ζ distribuciones sobre el espacio
de Banach (Z, || · ||) . Entonces para todo a ≥ 0:

D(z)
α (µ ∗ ζ||ν ∗ ζ) ≤ D(z+a)

α (µ||ν) +Rα (ζ, a) .

Demostración. Primero asumamos z = 0. Ya que W∞(Z) es completo existe µ′ tal
que W∞(µ′, µ) ≤ a y Dα(µ

′||ν) = D
(a)
α (µ||ν). Sea (U,W ) la variable aleatoria dada

por el lema 4.2 inciso 3). De ahí tenemos P[||W || ≤ a] = 1, U ∼ µ, y U +W ∼ µ′.
Sea también V ∼ ν, y finalmente, Y ∼ ζ variable aleatoria independiente de las
anteriores. Podemos escribir:

Dα(µ ∗ ζ||ν ∗ ζ) = Dα(U + Y ||V + Y )

= Dα(U +W −W + Y ||V + Y ).

Usando la propiedad de posprocesamiento con la función determinista (x, y)
f−→ x+y

tenemos

Dα(U +W −W + Y ||V + Y ) ≤ Dα ((U +W,−W + Y )||(V, Y )) .

Por tanto:

Dα(µ ∗ ζ||ν ∗ ζ) ≤ Dα ((U +W,−W + Y )||(V, Y )) . (5.1)
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Ahora usamos la independencia para obtener:

exp [(α− 1)Dα ((U +W,−W + Y )||(V, Y ))]

=

∫ ∫ (
f(U+W,−W+Y )(v, y)

f(V,Y )(v, y)

)α

f(V,Y )(v, y)dvdy

=

∫ ∫ (
f−W+Y |U+W (y|v)fU+W (v)

fV (v)fY (y)

)α

fV (v)fY (y)dvdy

=

∫ (
fU+W (v)

fV (v)

)α

fV (v)

(∫ (
f−W+Y |U+W (y|v)

fY (y)

)α

fY (y)dy

)
dv

≤
∫ (

fU+W (v)

fV (v)

)α

fV (v)

(
ess sup
v′∼ν

∫ (
f−W+Y |U+W (y|v)

fY (y)

)α

fY (y)dy

)
dv

=

∫ (
fU+W (v)

fV (v)

)α

fV (v)dv ess sup
v′∼ν

∫ (
f−W+Y |U+W (y|v)

fY (y)

)α

fY (y)dy. (5.2)

Luego consideremos lo siguiente:

f−W+Y |U+W (y|v) = fU+W,−W+Y (v, y)

fU+W (v)

=

∫
fU+W,−W+Y,W (v, y, w)dw

fU+W (v)

=

∫
f−W+Y |U+W,W (y|v, w)fU+W,W (v, w)

fU+W (v)
dw

=

∫
f−W+Y |U+W,W (y|v, w)fW |U+W (w|v)dw.

De aquí escribimos:∫ (
f−W+Y |U+W (y|v)

fY (y)

)α

fY dy

=

∫ (∫
f−W+Y |U+W,W (y|v, w)

fY (y)
fW |U+W (w|v)dw

)α

fY (y)dy.

Ya que α > 1 usamos la desigualdad de Jenssen con respecto a fW |U+W (w|v)dw:

≤
∫ [∫ (

f−W+Y |U+W,W (y|v, w)
fY (y)

)α

fW |U+W (w|v)dw
]
fY (y)dy.

Luego usando el teorema de Tonelli:

=

∫ [∫ (
f−W+Y |U+W,W (y|v, w)

fY (y)

)α

fY (y)dy

]
fW |U+W (w|v)dw

≤ ess sup
w∼PW

∫ (
f−W+Y |U+W,W (y|v, w)

fY (y)

)α

fY (y)dy.

Ahora tenemos:

ess sup
v′∼ν

∫ (
f−W+Y |U+W (y|v)

fY (y)

)α

fY (y)dy

≤ ess sup
v′∼ν

ess sup
w∼PW

∫ (
f−W+Y |U+W,W (y|v, w)

fY (y)

)α

fY (y)dy.
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Regresando a (5.2) hemos llegado a que:

exp [(α− 1)Dα ((U +W,−W + Y )||(V, Y ))] ≤∫ (
fU+W (v)

fV (v)

)α

fV (v)dv ess sup
v′∼ν

ess sup
w∼PW

∫ (
f−W+Y |U+W,W (y|v, w)

fY (y)

)α

fY (y)dy.

Hay que detenerse aquí un momento para notar lo siguiente

f−W+Y,U+W,W (y, v, w)

fU+W,W (v, w)
=
fY,U+W,W (y + w, v, w)

fU+W,W (v, w)
;

ya que Y es independiente al resto de las variables

fY,U+W,W (y + w, v, w)

fU+W,W (v, w)
= fY (y + w)

fU+W,W (v, w)

fU+W,W (v, w)

= fY (y + w)

= fY−W (y).

Es decir:
f−W+Y |U+W,W (y|v, w) = fY−W (y).

Así que:

exp [(α− 1)Dα ((U +W,−W + Y )||(V, Y ))]

≤
∫ (

fU+W (v)

fV (v)

)α

fV (v)dv ess sup
v′∼ν

ess sup
w∼PW

∫ (
f−W+Y (y)

fY (y)

)α

fY (y)dy

=

∫ (
fU+W (v)

fV (v)

)α

fV (v)dv ess sup
w∼PW

∫ (
f−W+Y (y)

fY (y)

)α

fY (y)dy

≤
∫ (

fU+W (v)

fV (v)

)α

fV (v)dv sup
x:||x||≤a

∫ (
fx+Y (y)

fY (y)

)α

fY (y)dy.

Regresamos a la divergencia de Renyi reescribiendo de la siguiente manera∫ (
fU+W (v)

fV (v)

)α

fV (v)dv sup
x:||x||≤a

∫ (
fx+Y (y)

fY (y)

)α

fY (y)dy

= exp [(α− 1)Dα(µ
′||ν)] sup

x:||x||≤a

exp [(α− 1)Dα(ζ ∗ x||ζ)]

= exp [(α− 1)Dα(µ
′||ν)] exp

[
(α− 1) sup

x:||x||≤a

Dα(ζ ∗ x||ζ)

]
= exp [(α− 1)Dα(µ

′||ν)] exp [(α− 1)Rα(ζ, a)] .

Retomando desde la desigualdad (5.1) tenemos:

Dα(µ ∗ ζ||ν ∗ ζ) ≤ D(a)
α (µ||ν) +Rα(ζ, a).

Ya esta para z = 0. Ahora definimos para z > 0:

hz(x) =

{
x si ||x|| ≤ z,
x

||x||z si z < ||x||.
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Notemos que ||hz(x)|| ≤ z para todo x, y si ||x|| ≤ z + a, tenemos

||x− hz(x)|| ≤ ||x|| − ||hz(x)|| ≤ z + a+ ||hz(x)|| ≤ a.

Consideremos ahora µ′ tal que Dα(µ
′||ν) = D

(z+a)
α (µ||ν); consideremos la variable

aleatoria (U,W ) tal que ||W || ≤ a con probabilidad 1, U ∼ µ y U + W ∼ µ′.
Establezcamos W1 = hz(W ), y W2 = W−W1. En base a las observaciones anteriores
tenemos ||W1|| ≤ z y ||W2|| ≤ a con probabilidad 1. Luego entonces tenemos:

W∞(µ ∗ ζ, µ ∗ PW1 ∗ ζ) = ı́nf
γ∈Γ(µ∗ζ,µ∗PW1

∗ζ)
ess sup
(x,y)∼γ

||x− y||

≤ ess sup
(x,y)∼(U+Y,U+W1+Y )

||x− y||

= ess sup
(U+Y,U+W1+Y )

||U + Y − (U +W1 + Y )||

= ess sup
(U+Y,U+W1+Y )

||W1||

≤ z.

Así que µ ∗ PW1 ∗ ζ ∈ B||·||(µ ∗ ζ, z), por tanto:

D(z)
α (U + Y ||V + Y ) ≤ Dα(U +W1 + Y ||V + Y )

≤ D(a)
α (U +W1||V ) +Rα(ζ, a) por el caso z = 0.

Luego tenemos también, en analogía a lo anterior W∞(µ ∗ PW1 , µ ∗ PW1 ∗ PW2) ≤ a,
implica:

D(a)
α (U +W1||V ) ≤ Dα(U +W1 +W2||V )

= Dα(U +W ||V )

= D(z+a)
α (U ||V ).

Concluimos:
D(z)

α (µ ∗ ζ||ν ∗ ζ) ≤ D(z+a)
α (µ||ν) +Rα(ζ, a).

Lema 5.2 (Contracción reduce D(z)
α ). Sea z ≥ 0, y ϕ, ϕ′ contracciones en (Z, || · ||)

tales que supx ||ϕ(x)− ϕ
′
(x)|| ≤ s. Entonces para variables aleatorias X y X ′ sobre

Z se cumple:
D(z+s)

α (ϕ(X)||ϕ′
(X

′
)) ≤ D(z)

α (X||X ′
).

Demostración. Usamos el lema 4.2 Para establecer una variable aleatoria Y tal que:

D(z)
α (X||X ′) = Dα(Y ||X ′)

con P [||Y −X|| ≤ z] = 1, es decir, sea Y tal que el ínfimo se alcanza, como se tiene
W∞(PY ,PX) ≤ z por el ya citado lema, tenemos que con probabilidad 1 se cumple
la desigualdad.
Luego observamos que, para esta variable aleatoria Y con probabilidad 1 tenemos,
por ser ϕ contracción y por hipótesis:

||ϕ(X)− ϕ′(Y )|| = ||ϕ(X)− ϕ(Y ) + ϕ(Y )− ϕ′(Y )||
≤ ||ϕ(X)− ϕ(Y )||+ ||ϕ(Y )− ϕ′(Y )||
≤ ||X − Y ||+ s

≤ z + s.
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Es decir; P [||ϕ(X)− ϕ′(Y )|| ≤ z + s] = 1, nuevamente usando el lema 4.2 tenemos
que W∞(Pϕ(X),Pϕ′(Y )) ≤ z+s, por tanto: D(z+s)

α (ϕ(X)||ϕ′(X ′)) ≤ Dα(ϕ
′(Y )||ϕ′(X ′))

por definición de divergencia de Renyi deslizada. Ahora usando la propiedad de
post− processing para la divergencia de Renyi tenemos:

D(z+s)
α (ϕ(X)||ϕ′(X ′)) ≤ Dα(ϕ

′(Y )||ϕ′(X ′)) ≤ Dα(Y ||X ′) = D(z)
α (X||X ′).

El siguiente teorema da garantías de privacidad para algoritmos ICR calibrando
los ruidos que se suman en cada iteración.

Teorema 5.3. Sean XT , X ′
T salidas de ICRT (X0, {ϕt}, {ζt}) y ICRT (X0, {ϕ′

t}, {ζt})
respectivamente. Sea st ≥ supx ||ϕt(x)− ϕ

′
t(x)||. Sea a1, . . . , aT una sucesión de nú-

meros reales positivos y sea zt =
∑

i≤t si −
∑

i≤t ai. Si zt ≥ 0 para todo t, entonces:

D(zT )
α (XT ||X

′

T ) ≤
T∑
t=1

Rα(ζt, at).

En particular si zT = 0, entonces:

Dα(XT ||X
′

T ) ≤
T∑
t=1

Rα(ζt, at).

Demostración. Procedemos por inducción sobre T . Caso T = 1: Sea Z1 ∼ ζ, tene-
mos:

X1 = ϕ1(X0) + Z1 y X ′
1 = ϕ′

1(X0) + Z1.

Para T = 1 tenemos a1 ≥ 0, s1 = supx ||ϕ1(x) − ϕ′
1(x)||, y z1 = s1 − a1 bajo la

suposición z1 ≥ 0. Usando el lema de reducción de ruido tenemos:

D(z1)
α (X1||X ′

1) = D(z1)
α (ϕ1(X0) + Z1||ϕ′

1(X0) + Z1)

≤ D(z1+a1)
α (ϕ1(X0)||ϕ′

1(X0)) +Rα(ζ1, a1).

Luego por el lema Contracción reduce D(z)
α tenemos:

D(z1+a1)
α (ϕ1(X0)||ϕ′

1(X0)) +Rα(ζ1, a1) = D(s)
α (ϕ1(X0)||ϕ′

1(X0)) +Rα(ζ1, a1)

≤ D(0)
α (X0||X0) +Rα(ζ1, a1)

= Rα(ζ1, a1).

Concluimos el caso T = 1:

D(z1)
α (X1||X ′

1) ≤ Rα(ζ1, a1).

Supongamos ahora que se cumple para T = k por demostrar que es válido para
k + 1: Usando el lema de reducción de ruido:

D(zk+1)
α (Xk+1||X ′

k+1) = D(zk+sk+1−ak+1)
α (ϕk+1(Xk) + Zk+1||ϕ′

k+1(X
′
k) + Zk+1)

≤ D(zk+sk+1)
α (ϕk+1(Xk)||ϕ′

k+1(X
′
k)) +Rα(ζk+1, ak+1).
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Por Contracción reduce D(z)
α

D(zk+1)
α (Xk+1||X ′

k+1) ≤ D(zk)
α (Xk||X ′

k) +Rα(ζk+1, ak+1).

Por hipótesis de inducción:

D(zk+1)
α (Xk+1||X ′

k+1) ≤
∑
i≤k

Rα(ζi, ai) +Rα(ζk+1, ak+1).

Este teorema es central en las pruebas de resultados sobre la conservación de la
privacidad en algoritmos de descenso del gradiente. Veamos un ejemplo tomado de
[Fel+18], Proyected noisy stochastic gradient descent (PNSGD).

Algoritmo: Proyected Noisy Stochastic Gradient Descent (PNSGD) en
Rn

Entrada: Conjunto de datos S = {x1, . . . , xn}, función f : K ×X → R convexa en
el primer argumento, tasa de aprendizaje η, punto inicial w0 ∈ K ⊆ Rn, parámetro
de ruido σ.

Procedimiento: Para cada iteración t ∈ {0, . . . , n− 1} hacer:

vt+1 ← wt − η (∇wf(wt, xt+1) + Zt) , Zt ∼ N (0, σ2Id)

wt+1 ← ΠK(vt+1) = argmı́n
θ∈K
∥θ − vt+1∥22.

Salida: El punto final wn. En este momento destacaremos que

Rα(N(0, σ2I), a) =
αa2

2σ2
, (5.3)

esto se deduce fácilmente del siguiente resultado que se puede encontrar en [LV87]
pág. 45.

Dα(N(µ0Σ)||N(µ1,Σ)) =
1

α
(µ1 − µ0)

TΣ−1(µ0 − µ1).

El siguiente resultado es una aplicación del teorema 5.3.

Teorema 5.4. Sea K ⊆ Rn un conjunto convexo, {f(·, x)}x∈X una familia de fun-
ciones L-Lipschitz, con gradiente β-Lipschitz sobre K. Entonces para todo η < 2/β,
σ > 0, α > 1, t ∈ {1, . . . , n}, w0 ∈ K, S ∈ X n, PNSGD(S,w0, η, σ) satisface(

α,
αε

n+ 1− t

)
−RDP

para su t-ésima entrada, donde ε = 2L2

σ2 .

Demostración. Consideremos S = (x1, . . . , xn) y S ′ = (x1, . . . , xt−1, x
′
t, xt+1, . . . , xn)

De los teoremas B.2 y B.1 en el apéndice deducimos que PNSGD(S,w0, η, σ) es
una algoritmo ICR (definición 5.2) bajo la hipótesis de que ∇f es β-Lipschitz y
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η ≤ 2/β, ya que la proyección es una contracción y también gradiente. El algoritmo
ICR sobre el conjunto S se conforma por las contracciones

ψi(w) = ΠK(w)− η∇f(ΠK(w), xi),

y los ruidos Zi ∼ N(0, (ησ)2I), para S ′, las contracciones quedan como ψ′
i = ψi,

excepto para t, aquí f esta evaluada en x′t; ya que para todo x ∈ X , y w ∈ K f es
L-Lipschitz tenemos:

sup
w
||ψt(w)− ψ′

t(w)||

= sup
w
||η∇f(ΠK(w), xt)− η∇f(ΠK(w), x

′
t)|| ≤ 2ηL.

Aplicamos el teorema 5.3 con a1, . . . , at−1 = 0 y at . . . , an = 2ηL
n−t+1

, donde definimos
st = 2ηL y si = 0 para i ̸= t. De esta manera zi ≥ 0 para i ≤ n, con zn = 0. Por
este mismo teorema y por la expresión 5.3 se obtiene

Dα(Xn||X ′
n) ≤

α

2η2σ2

n∑
i=1

a2t ≤
2αL2

σ2(n− t+ 1)
.

Una aplicación sencilla, pero ilustrativa es la regresión lineal. Considérese un
conjunto de datos S = {(xi, yi)}ni=1 donde xi ∈ Rd y yi ∈ R, como espacio de pe-
sos K = {w ∈ Rd | ||w||2 ≤ R}, función de aproximación hw(xi) = ⟨w,xi⟩ donde
w ∈ K es el vector de pesos, la función de pérdida es el error cuadrático medio
f(w,xi) =

1
2
(yi − ⟨w,xi⟩)2.

El gradiente de la pérdida es ∇f(w,xi) = (⟨w,xi⟩ − yi)xi. Nótese que, cuando
||xi||2 ≤ 1 y |yi| ≤ 1, entonces f(w,xi) es L-Lipschitz con L = R + 1, el gradiente
es 1-Lipschitz.

Así para todo η < 2, σ > 0, α > 1, t = {1, . . . , n}, w0 ∈ K, S y ζi ∼ N(0, σ2I) tene-
mos, por el teorema 5.4, que el algoritmo ICR (w0, {f(·,xi)}ni=1, {ζ}) es

(
α, αε

n+1−t

)
−

RDP para la t-ésima iteración, donde ε = 2(R+1)2

σ2 para todo i.



Capítulo 6

Conclusiones

Se dispone de un método garantizado para calibrar la privacidad en algoritmos
de descenso del gradiente aplicados a funciones de pérdida ampliamente utilizadas,
bajo ciertas modificaciones como la proyección sobre conjuntos convexos. Este enfo-
que es factible siempre que se pueda acotar una región alrededor del mínimo global.
En tales condiciones, al añadir ruido en cada iteración y posponer la publicación de
los resultados hasta el final, se asegura la garantía de privacidad.

La relevancia de este teorema radica en que permite resguardar la información del
conjunto de entrenamiento en algoritmos de aprendizaje automático. Además, la
teoría alcanza un nivel suficiente de generalidad mediante el uso de la herramienta
matemática conocida como magnitud de ruido de radio a, lo que ha posibilitado
parametrizar distribuciones arbitrarias para el ruido agregado en cada iteración de
los algoritmos. Asimismo, la distancia infinito de Wasserstein permite calibrar el
radio alrededor de la distribución inicial en el cual la garantía de privacidad queda
asegurada.
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Apéndice A

Probabilidad y Medida

Usaremos las definiciones comunes de σ-álgebra, espacio medible, medida y me-
dida de probabilidad. Un espacio de Banach es un espacio vectorial normado y
completo en la métrica definida por su norma. Si µ y ν son dos medidas sobre el
espacio medible (Ω,F) decimos que ν es absolutamente continua con respecto a µ
cuando ν(A) = 0 siempre que µ(A) = 0 para A ∈ F .

A continuación se exponen un conjunto de definiciones y resultados clásicos en la
teoría de la medida y de probabilidad. Comenzamos esta sección recordando con-
ceptos elementales, esto será útil también para indicar la notación que usaremos a
lo largo de este trabajo.

Si X es un conjunto no vacío escribimos σ(X) para denotar a la σ-álgebra gene-
rada por dicho conjunto; es decir la σ-álgebra más pequeña que contiene a X.

La definición A.1, así como el teorema A.1, y el Corolario A.1.1 son tomados del
libro de Gravinsky [Gra09] las demostraciones se pueden encontrar ahí mismo, el
tema que se aborda es el teorema de clases monótonas.

Definición A.1. Consideremos un conjunto X ̸= ∅.

Un conjunto C ⊆ {0, 1}X , C ̸= ∅ se llama π-sistema si es cerrado bajo inter-
secciones finitas.

Un conjunto L ⊆ {0, 1}X , L ̸= ∅ se llama un sistema de Dynkin cuando:

1.- X ∈ L.
2.- Si E,F ∈ L y F ⊂ E, entonces E − F ∈ L.
3.- Si {En}n∈N ⊂ L es una sucesión creciente, entonces

⋃
n∈NEn ∈ L.

El siguiente teorema es llamado de clases monótonas o teorema de Dynkin.

Teorema A.1. [Clases Monótonas] Sean X ̸= ∅, C ∈ {0, 1}X un π-sistema, y L un
sistema de Dynkin tal que C ⊆ L, entonces σ(C) ⊆ L.

Luego el siguiente corolario es una observación que indica en qué sentido este
teorema es útil.
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Corolario A.1.1. Si C ⊆ {0, 1}X es un π-sistema, entonces:

σ(C) =
⋂
{D sistema de Dynkin en {0, 1}X : C ⊆ D}.

Dado que haremos uso frecuente de la derivada de Radón-Nikodym recordaremos
el teorema que introduce el concepto, su demostración se puede encontrar en [Roy68].

Teorema A.2 (Radón-Nikodym). Sea (Ω,F , µ) un espacio de medida σ-finito, ν
una medida definida sobre F tal que ν ≪ µ. Entonces existe una función medible
no negativa f única en casi todas partes respecto a µ, tal que para todo A ∈ F se
cumple:

ν(A) =

∫
A

fdµ.

El significado de la expresión casi todas partes respecto a µ es el habitual en el
contexto de análisis real, en este caso para todo g : Ω→ R+∪{0}, µ{ω ∈ Ω : f(ω) ̸=
g(ω)} = 0. A la función medible f que proporciona el teorema se le llama derivada
de Radón-Nikodym, usamos también la siguiente notación:

dν

dµ
:= f.

Los siguientes lemas y proposiciones son propiedades de la derivada de Radón-
Nikodym que se usarán en desarrollos posteriores.

Lema A.3. Sea (Ω,F) un espacio medible, µ, ν, m medidas sobre este espacio tales
que µ≪ ν ≪ m. Se cumple:

Para cualquier variable aleatoria X : Ω→ R:∫
Xdν =

∫
X
dν

dm
dm.

Para dν
dµ
̸= 0 casi en todas partes [m], entonces (dµ/dm)

(dν/dm)
= dµ

dν
.

Demostración. Para todo A ∈ F tenemos:∫
dν

dm
1Adm = ν(A) =

∫
1Adν.

Siguiendo el razonamiento canónico; si f es una función simple con valores f(ω) =∑n
i=1 ai1i(ω) integrando:∫

dν

dm
fdm =

∫
dν

dm

(
n∑

i=1

ai1Ai

)
dm

=
n∑

i=1

ai

∫
dν

dm
1Ai

dm
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=
n∑

i=1

aiν(Ai) =

∫
fdν.

Luego toda función medible positiva g puede ser aproximada por alguna sucesión de
funciones simples, por ejemplo {gn}. Usando la propiedad (lema) de convergencia
monótona tenemos: ∫

dν

dµ
gdm =

∫
dν

dµ
ĺım
n↑∞

gndm

= ĺım
n↑∞

∫
dν

dµ
gndm

= ĺım
n↑∞

∫
gndν

=

∫
ĺım
n↑∞

gndν

=

∫
gdν.

Finalmente si h es cualquier función medible escribimos h = h+ − h−, y:∫
dν

dm
hdm =

∫
dν

dm

(
h+ − h−

)
dm

=

∫
dν

dm
h+dm −

∫
dν

dm
h−dm

=

∫
h+dν −

∫
h−dν

=

∫ (
h+ − h−

)
dν

=

∫
hdν.

Para el segundo punto se tiene para todo A ∈ F :∫
A

dµ

dm
dm = µ(A) =

∫
A

dµ

dν
dν =

∫
A

dµ

dν

dν

dm
dm.

De donde c.s.-m se tiene:
dµ

dm
=
dµ

dν

dν

dm
.

Y se concluye el segundo punto si dν/dm ̸= 0 casi seguramente m.
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Si F1 y F2 son dos σ-álgebras, denotamos:

F1 ⊗F2 := σ{A×B : A ∈ F1 y B ∈ F2}.

Además µ× ν denota la única medida ([Roy68] pág. 265) sobre F1 ⊗F2 tal que
(µ× ν)(A×B) = µ(A)ν(B), para todo A ∈ F1, B ∈ F2.

Definición A.2. Sean (Ωi,Fi, µi), i ∈ {1, 2}, espacios de medida; consideremos el
espacio (Ω1×Ω2,F1⊗F2, µ1× µ2), sea E ∈ F1⊗F2, dado x ∈ Ω1 definimos Ex :=
{y ∈ Ω2|(x, y) ∈ Ω1 ×Ω2}, dado y ∈ Ω2 definimos Ey := {x ∈ Ω1|(x, y) ∈ Ω1 ×Ω2}.

Las demostraciones del lema A.4, la proposición A.1, teorema A.5 y teorema A.6
están en el libro de Royden [Roy68] en el capítulo 12 sección 4. Estos resultados se
aplican de manera análoga con Ey.

Lema A.4. Consideremos todo el contexto de la definición A.2 justo arriba. Sea
E ∈ F1 ⊗ F2 tal que (µ1 × µ2)(E) = 0. Entonces para casi todo x ∈ Ω1 se tiene
µ2(Ex) = 0.

Proposición A.1. En el mismo contexto sea E ∈ F1⊗F2 tal que (µ1×µ2)(E) <∞.
Entonces para casi todo x ∈ Ω1 el conjunto Ex es F2-medible. Además la función
definida como

g(x) = µ2(Ex).

es una función medible definida para casi todo x ∈ Ω1; y∫
Ω1

g dµ1 = (µ1 × µ2)(E).

Los teoremas de Fubini y Tonelli, son muy usados en el contexto de σ-álgebras
y medidas producto. Un espacio de medida (Ω,F , µ) es completo sí y solo si A ⊆ N
y µ(N) = 0 implica A ∈ F .

Teorema A.5. [Fubini] Sean (Ω1,F1, µ), (Ω2,F2, ν) dos espacios de medida com-
pletos y f una función integrable en Ω1 × Ω2. Entonces:

i.- Para casi todo u la función fu definida por fu(v) = f(u, v) es una función
integrable en Ω2.

i’.- Para casi todo v la función fv definida por fv(u) = f(u, v) es una función
integrable en Ω1.

ii.-
∫

Ω2
f(u, v)dν(v) es una función integrable en Ω1.

ii’.-
∫

Ω1
f(u, v)dµ(u) es una función integrable en Ω2.

iii.-
∫

Ω1

[∫
Ω2
fdν

]
dµ =

∫
Ω1×Ω2

fd (ν × µ) =
∫

Ω2

[∫
Ω1
fdµ

]
dν.

Teorema A.6. [Tonelli] Sean (Ω1,F1, µ), (Ω2,F2, ν) dos espacios de medida com-
pletos y f una función medible no negativa en Ω1 × Ω2. Entonces:
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i.- Para casi todo u la función fu definida por fu(v) = f(u, v) es una función
integrable en Ω2.

i’.- Para casi todo v la función fv definida por fv(u) = f(u, v) es una función
integrable en Ω1.

ii.-
∫

Ω2
f(u, v)dν(v) es una función integrable en Ω1.

ii’.-
∫

Ω1
f(u, v)dµ(u) es una función integrable en Ω2.

iii.-
∫

Ω1

[∫
Ω2
fdν

]
dµ =

∫
Ω1×Ω2

fd (ν × µ) =
∫

Ω2

[∫
Ω1
fdµ

]
dν.

A continuación se exponen algunos resultados sobre medida que usaremos más
adelante.

Lema A.7. Sean (Ωi,Fi), i ∈ {1, 2}, espacios medibles con medidas µ, ν finitas,
sobre (Ω1,F1), y medidas µ′, ν ′ finitas sobre (Ω2,F2) tales que µ ≪ ν y µ′ ≪ ν ′

entonces µ× µ′ ≪ ν × ν ′.

Demostración. Sea E ∈ σ(Ω1 × Ω2) supongamos (ν × ν)′(E) = 0, entonces por el
lema A.4 tenemos ν ′(Eω) = 0 c.s.-ν en la variable ω. Por hipótesis µ′ ≪ ν ′, por
tanto µ′(Eω) = 0 c.s.-ν, también µ≪ ν, de donde µ {ω ∈ Ω1 : µ

′(Eω) ̸= 0} = 0 por
tanto tenemos µ′(Eω) = 0 c.s.-µ finalmente por la Proposición A.1:

(µ× µ)′(E) =

∫
µ′(Eω)dµ = 0.

Lema A.8. Continuando

d(µ× µ′)/d(ν × ν ′) = (dµ/dν) (dµ′/dν ′) .

Demostración. Sea A × B ⊆ Ω1 × Ω2 rectángulo medible, usando el lema A.3 y el
teorema de Fubini tenemos:∫

A×B

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′) = (µ× µ′)(A×B)

= µ(A)µ′(B)

=

∫
A

dµ

dν
dν ·

∫
B

dµ′

dν ′
dν ′

=

∫
A×B

dµ

dν

dµ′

dν ′
d(ν × ν ′).

Ahora consideremos el conjunto:

D =

D medible de {0, 1}Ω1×Ω2

∣∣∣∣∣∣
∫

D

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′) =

∫
D

dµ

dν

dν ′

dµ′d(ν × ν
′)

 .

Veamos que el conjunto es de Dynkin.
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a) Ω1 × Ω2 ∈ D porque es un rectángulo medible.

b) Consideremos E,F ∈ D, F ⊆ E:∫
E−F

dµ

dν

dµ′

dν ′
d(ν × ν ′) =

∫
dµ

dν

dµ′

dν ′
(1E − 1F ) d(ν × ν ′)

=

∫
E

dµ

dν

dµ′

dν ′
d(ν × ν ′)−

∫
F

dµ

dν

dµ′

dν ′
d(ν × ν ′)

=

∫
E

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′)−

∫
F

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′)

=

∫
E−F

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′).

c) Sea {En}n∈N ⊆ D; consideremos {Fj}j∈N donde Fj = En−
⋃j−1

n=1En, tenemos:∫
⋃∞

j=1 En

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′) =

∫
⋃∞

j=1 Fn

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′)

=
∞∑
j=1

∫
Fj

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′)

=
∞∑
j=1

∫
Fj

dµ

dν

dµ′

dν ′
d(ν × ν ′)

=

∫
⋃∞

j=1 Fj

dµ

dν

dµ′

dν ′
d(ν × ν ′).

Por a), b) y c); D es de Dynkin y al aplicar el teorema de clases monótonas
se concluye que para todo conjunto medible E se tiene:∫

E

d(µ× µ′)

d(ν × ν ′)
d(ν × ν ′) =

∫
E

dµ

dν

dµ′

dν ′
d(ν × ν ′).

Tenemos entonces d(µ× µ′)/d(ν × ν ′) = (dµ/dν) (dµ′/dν ′). c.s.− ν × ν ′.

Lema A.9. Sea (Ω,F) un espacio medible; µ, ν medidas tales que µ ≪ ν, G sub-
sigma álgebra de F . Se cumple:

E

[
dµ

dν
|G
]
=
dµ|G
dν|G

ν − c.s.

Demostración. Comenzamos por revisar que para X : Ω → R que es G-medible se
cumple para todo B ∈ G: ∫

B

Xdν|G =

∫
B

Xdν.
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Esto es sencillo, observando que para todo A, B ∈ G∫
B

1Adν = ν (A ∩B) = ν|G (A ∩B) =

∫
B

1Adν|G.

Por la linealidad de la integral esto mismo se cumple para variables aleatorias sim-
ples, en consecuencia para variables aleatorias positivas, y luego para toda variable
aleatoria.
Si µ ≪ ν, también µ|G ≪ ν|G, si ν es sigma finita, también lo es ν|G, por tanto
podemos escribir para todo B ∈ G:∫

B

dµ

dν
dν = µ(B) = µ|G(B) =

∫
B

dµ|G
dν|G

dν|G =

∫
B

dµ|G
dν|G

dν.

Por tanto E
[
dµ
dν
|G
]
= dµ|G

dν|G
c.s.-ν.



Apéndice B

Funciones Lipschitz

Las funciones Lipschitz y el análisis convexo juegan un papel fundamental en el
estudio de la privacidad diferencial, ya que proporcionan herramientas matemáti-
cas precisas para controlar la sensibilidad de los algoritmos a cambios en los datos
individuales. En particular, una función Lipschitz acotada garantiza que pequeñas
variaciones en la entrada no produzcan grandes fluctuaciones en la salida, lo cual
es esencial para limitar la cantidad de información que puede filtrarse sobre un in-
dividuo específico. Por otro lado, el análisis convexo permite formular y resolver
problemas de optimización que surgen en mecanismos de privacidad, como el dise-
ño de ruido óptimo o la caracterización de garantías de privacidad en algoritmos
iterativos. La combinación de ambas herramientas permite desarrollar mecanismos
diferenciales robustos, eficientes y con garantías matemáticas verificables.

Definición B.1. Consideremos (Z1, ||·||1), (Z2, ||·||2) espacios de Banach, f : Z1 →
Z2 decimos que f es K-Lipschitz, si existe K > 0 tal que:

||f(x)− f(y)||2 ≤ K||x− y||1 para todo x, y ∈ Z1.

La forma más general de esta definición es en espacios métricos, en este trabajo se
usará para espacios de Banach.

Recordamos también que un campo escalar diferenciable f : D ⊆ Rn → R tiene
asociado el campo vectorial ∇f : D ⊆ Rn → Rn dado por:

∇f(x) =
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

)
llamado gradiente de f .

Teorema B.1. Sea K un conjunto convexo en Rn. Definimos el operador proyección
como:

ΠK(x) = mı́n
y∈K

d(x, y).

Entonces ΠK es una contracción.

Demostración. Consideremos x, z ∈ Rn entonces:

||ΠK(x)− ΠK(z)|| = ||mı́n
y∈K

d(x, y)−mı́n
y∈K

d(z, y)||.

42
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En primer lugar notemos que para todo w ∈ K se tiene ⟨z − ΠK(z), w − ΠK(z)⟩ ≤ 0,
cuando z ∈ K es evidente; para el caso z ∈ Kc tenemos que z − ΠK(z) es un vector
normal a K, por ser K convexo; el ángulo entre z − ΠK(z) y w − ΠK(z) está entre
π/2 y π por tanto se tiene la desigualdad con respecto al producto interior canónico
en Rn que esta en función del coseno del ángulo. Para una demostración analítica
de este hecho, que involucra otros conceptos de convexidad consultar Lema 3.1.4
en [Nes04].Por las mismas razones tenemos ⟨x− ΠK(x), w

′ − ΠK(x)⟩ ≤ 0 para todo
w′ ∈ K. Sumando ambas expresiones tenemos

⟨z − ΠK(z), w − ΠK(z)⟩+ ⟨x− ΠK(x), w
′ − ΠK(x)⟩ ≤ 0;

sustituyendo w = ΠK(x) y w′ = ΠK(z) se sigue

0 ≥⟨z − ΠK(z),ΠK(x)− ΠK(z)⟩+ ⟨x− ΠK(x),ΠK(z)− ΠK(x)⟩
= ⟨z − ΠK(z),ΠK(x)− ΠK(z)⟩ − ⟨x− ΠK(x),ΠK(x)− ΠK(z)⟩
= ⟨z − x− ΠK(z) + ΠK(x),ΠK(x)− ΠK(z)⟩
= ⟨z − x,ΠK(x)− ΠK(z)⟩+ ⟨ΠK(x)− ΠK(z),ΠK(x)− ΠK(z)⟩ .

De donde

||ΠK(x)− ΠK(z)||2 = ⟨ΠK(x)− ΠK(z),ΠK(x)− ΠK(z)⟩
≤ − ⟨z − x,ΠK(x)− ΠK(z)⟩
= ⟨x− z,ΠK(x)− ΠK(z)⟩ .

Usando la desigualdad de Cauchy-Schwarz

⟨x− z,ΠK(x)− ΠK(z)⟩ ≤ ||x− z|| || ΠK(x)− ΠK(z)||.

Se concluye

||ΠK(x)− ΠK(z)||2 ≤ ||x− z|| || ΠK(x)− ΠK(z)||
||ΠK(x)− ΠK(z)|| ≤ ||x− z||.

Teorema B.2. Sea f : Rd → R es convexa con gradiente β − Lipschitz. Entonces
la función ψ definida como

ψ(w) = w − η∇f(w)

es una contracción si η ≤ 2/β.

Demostración.

||w − η∇f(w)− w′ + η∇f(w′)||2 = ||w − w′ − η(∇f(w)−∇f(w′))||2

≤ ||w − w′||2 − 2η ⟨∇f(w)−∇f(w′), w − w′⟩+ η2||∇f(w)−∇f(w′)||2.

Ahora, por el lema de Baillon-Haddad corolario 18.16 en [BC11], f cumple

⟨∇f(w)−∇f(w′), w − w′⟩ ≥ 1

β
||∇f(w)−∇f(w′)||2;
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entonces tenemos

||w − η∇f(w)− w′ + η∇f(w′)||2

≤ ||w − w′||2 − 2η
1

β
||∇f(w)−∇f(w′)||2 + η2||∇f(w)−∇f(w′)||2

= ||w − w′||2 +
(
η2 − 2

η

β

)
||∇f(w)−∇f(w′)||2.

Ahora, el gradiente es β-Lipschitz, entonces

||w − η∇f(w)− w′ + η∇f(w′)||2

≤ ||w − w′||2 +
(
η2 − 2

η

β

)
β2||w − w′||2

=
(
1 + η2β2 − 2ηβ

)
||w − w′||2

= (1− ηβ)2 ||w − w′||2.

Finalmente llegamos a

||ψ(w)− ψ(w′)|| ≤ |1− ηβ| || w − w′||.

Considerando η ≤ 2/β; ηβ − 1 ≤ 1. Por tanto ψ es una contracción.
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