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Introduccion

Dentro del universo de los datos cada vez toma mayor importancia la palabra
privacidad la cudl se concibe como la necesidad que el usuario de distintos sistemas
y aplicaciones tiene de que sus datos personales no puedan ser conocidos o vistos
sin su consentimiento. La realidad es que para hacer uso de la mayoria de las apli-
caciones que se conectan a internet el usuario debe otorgar acceso a datos sensibles,
estos pueden incluir su ubicacién, su nombre, su ocupacion, lo que busca en los na-
vegadores, sus compras a través de la red, etc. Grandes empresas tecnologicas desde
sus centros de investigacion han empujado iniciativas para lograr métodos que a la
vez les permitan usar datos de los usuarios para distintos fines, pero garantizando a
estos privacidad.

Estos métodos son aquellos enmarcados dentro del concepto de privacidad diferen-
cial. Un area critica en la que datos son usados es el aprendizaje mdaquina (machine
learning), aqui se cuenta con una amplia gama de modelos estadisticos que se usan
principalmente para predecir y/o clasificar. De manera muy general podemos decir
que en la mayoria de los modelos de machine learning se busca calcular los pardme-
tros del modelo a través de un conjunto de entrenamiento minimizando una funciéon
que mide el error de las predicciones. La familia de algoritmos de descenso del gra-
diente proporciona un gran surtido de métodos para minimizar la funciéon de error
o pérdida.

Los datos atraviesan este proceso de optimizacion, y en determinados contextos
se han desarrollado técnicas que son capaces de vulnerar la privacidad de los datos,
aun después de que estos han sido procesados por estos algoritmos.

La tesis se desarrolla en torno al tema de privacidad diferencial dentro de algoritmos
iterativos los cuales generalizan cierto tipo de algoritmos descenso del gradiente. En
particular se estudia el teorema 22 de |Fel+18§| el cual proporciona garantias de
privacidad para los algoritmos citados.

En el capitulo 1 se introducen los conceptos basicos usados en el enfoque mate-
mético sobre la privacidad en bases de datos, asi como una breve resena historica
del abordaje de este problema.

En el capitulo 2 se abordan la definicion de privacidad diferencial asi como las
herramientas mateméticas usadas en su estudio.

En el capitulo 3 se da un repaso de la divergencia de Renyi se introducen sus moti-
vaciones asi como resultados que son usados en capitulos posteriores.
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El capitulo 4 trata de la distancia Wasserstein, en particular para este trabajo se
usa la distancia Wasserstein infinito, se revisan los conceptos basicos y resultados
utiles.

Dentro del capitulo 5 se exponen los teoremas principales, aquellos que propor-
cionan garantias de privacidad para algoritmos iterativos.

Finalmente en los apéndices A y B se repasan resultados y conceptos de medi-
da, probabilidad y conjuntos convexos que son importantes dentro del resto de los
capitulos.



Capitulo 1

Privacidad

1.1. Introduccion

El concepto matematico de privacidad surge en medio del tratamiento compu-
tacional de datos. Por ejemplo:

1. Analisis estadistico de datos: Cuando empresas o instituciones guberna-
mentales publican estadisticas agregadas (promedios, conteos, histogramas),
la aplicacion de la privacidad permite hacerlo sin riesgo de re-identificacion.

2. Aprendizaje estadistico (Machine Learning) usando datos sensibles:
Al usar datos personales para entrenar modelos de Machine Learning (histo-
riales de salud, imagenes médicas, textos escritos por usuarios, etc.) se pone
en peligro la privacidad de los usuarios.

3. Recoleccion de datos del usuario: En aplicaciones moviles y/o en navega-
dores web se recolectan datos del usuario para mejorar productos o personalizar
recomendaciones. En este caso también la privacidad es vulnerable.

La privacidad computacional se ha formulado conceptualmente de distintas mane-
ras segiin los problemas que se intenten resolver. Esta surgié como respuesta a las,
cada vez mayores, preocupaciones sobre la exposicion y uso de datos personales
en una época caracterizada por la explotaciéon masiva de informacion y los limites
de las técnicas tradicionales de anonimizacién. En los anios noventa Latanya Swee-
ney propone la técnica del k-anonimato, sin embargo, investigaciones posteriores
demostraron que, incluso, tras eliminar identificadores directos (como nombres); la
combinacion de ciertos datos (como edad, codigo postal y sexo) podia permitir re-
identificar personas con sorprendente facilidad. Fue asi como surgié la necesidad
de un nuevo paradigma de privacidad que no dependiera de ocultar o transformar
datos, sino de garantias matematicas robustas.

La definicion formal (mateméatica) de privacidad diferencial fue propuesta por Cynthia
Dwork, Frank McSherry, Kobbi Nissim y Adam Smith, en 2006, en el articulo Cali-
brating Noise to Sensitivity in Private Data Analysis publicado en Proceedings of
the Third Theory of Cryptography Conference (TCC 2006). Su propuesta en lugar
de buscar que ciertos datos pudieran anonimizarse por completo, se propuso lograr
medir el cambio en la salida de un algoritmo cuando se agrega o elimina un elemento
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del conjunto de datos. Asi, se podia asegurar que ningun resultado revelara infor-
macion sensible sobre una persona en particular, sin importar cudnto conocimiento
previo tuviera un atacante.

En 2014 Google implement6 privacidad diferencial en su sistema RAPPOR (Rando-
mized Aggregatable Privacy-Preserving Ordinal Response) este es una aplicacion que
recopila estadisticas de uso del navegador Chrome de los usuarios, la implementacion
de privacidad diferencial tenia como objetivo conseguir informaciéon agregada (ma-
tematicamente hablando estadisticos) sin revelar datos individuales de los usuarios,
para ello RAPPOR implementa una forma de privacidad diferencial local donde los
datos son aleatorizados en el dispositivo personal antes de ser enviados a los servi-
dores. En 2016 Apple implementé privacidad diferencial en el sistema operativo iOS
10 con el objetivo de recolectar informacion de los usuarios de forma ttil y segura
a la vez para implementar mejoras en las sugerencias de texto, identificar errores
ortograficos, etc. de igual manera fue usada la técnica de privacidad diferencial local.
Como estos ejemplos hay otros y se han ido multiplicando.

La privacidad diferencial se ha convertido en el estandar de referencia en la protec-
cioén de datos, influyendo actualmente incluso en el desarrollo de politicas publicas.

1.2. Conceptos basicos

Llamamos base de datos a un conjunto de n-tuplas {xi,...,x,}, donde para

cadai=1,...,n, x; = (v, ...,2;). Pensamos en una tabla del siguiente estilo
Columna 1 | Columna 2 Columna k
X1 T11 T12 L1k
X2 L21 T22 Lok
Xn Tnl Tn2 Tk

Cuadro 1.1: Base de datos.

Cada z;; es algin tipo de dato computacional (flotante, entero, texto, booleano,
etc.). Una base de datos puede ser incluso un conjunto de tablas, es decir cada x;
puede ser pensado como una matriz con entradas en algtn tipo de dato computacio-
nal.

Una base de datos estadistica es aquella en la cual no se puede consultar a los
datos particulares, solo se pueden hacer consultas agregadas es decir; tinicamente
se tiene acceso a informacion estadistica sobre los datos (media, varianza, conteos,
moda, etc.), en este contexto se denomina curador de los datos al sujeto que puede
observar los datos particulares.

Una base de datos estadistica no es protecciéon suficiente a la privacidad de la in-
formacion individual de la base, por ejemplo, usando el promedio en subconjuntos
diferenciados por un dato es posible obtener informacion. En la tabla del cuadro 1
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supongamos que la columna 1 es numérica, usando el promedio para j =1,...,5y
para j = 1,...,s+ 1 se puede obtener

s+1 s
1 1
ﬂwﬂj:C*+U(s+1;;$ﬂ>—3<g;;$ﬂ>;

esta en realidad es una consulta muy sencilla, por ejemplo en SQL:

SELECT
(s+1)* (SELECT
AVG(Columna 1)
FROM tabla
WHERE idx < s+2)
s* (SELECT
AVG(Columna 1)
FROM tabla
WHERE idx < s+1).

La idea de privacidad diferencial es agregar ruido al resultado de las consultas para
que no sea posible distinguir de que tabla procede pero sin que pierda utilidad para
propositos estadisticos.



Capitulo 2

Privacidad Diferencial

2.1. Generalidades

Pensemos en una base de datos como un conjunto X no vacio cuyos elementos
son n-tuplas. Una consulta es una funciéon f que toma subconjuntos de la base X y
les asigna algiin objeto s. Por ejemplo, pensemos en la siguiente base de datos

X = {(l‘l, [L'Q,J?g)‘.’ﬂl < {025, 05, 075, 1},$2 € {A, B, C, D},l‘g = {0, 1}}
Sea A C X. La funcién f : {0,1}* — {VERDADERO, FALSO} dada por:

f(A) _ VERDADERO ) xr1>025 y x9 =D,
o FALSO en otro caso.

es una consulta.

Para fines de privacidad se busca aleatorizar la salida de las consultas a la base
de datos introduciendo cierto nivel de ruido que permita que los resultados propor-
cionen informacion 1til pero sin que se pueda determinar el dato preciso al hacer
comparaciones entre resultados sobre distintos subconjuntos de la base. Para esto in-
troducimos las siguientes definiciones. Denotamos como {0, 1} al conjunto potencia
de X.

Definicion 2.1. Sea X un conjunto no vacio. Consideremos una distancia d :
{0,1}% x {0,1}* — R. Dos conjuntos D, D' se dicen p-adyacentes o p-vecinos
con respecto a d si d(D,D’) < p. Parap =1 diremos simplemente conjuntos vecinos
o adyacentes.

Definicion 2.2. Sea (2, F,P) un espacio de probabilidad, E # 0 y (G, G) un espacio
medible. Un algoritmo aleatorizado de E en G es una funcion A:{0,1}¥ x Q — G
tal que para todo A € {0,1}F, A(A,-) es una funcion medible. Denotada como A(A).

Para cada A C E tenemos una distribucion Py (-) = PLA(A) € -]. Deseamos que
al observar alguna salida s del algoritmo no sea posible determinar de que distribu-
cion fue muestreado, esto resultara posible si es dificil distinguir entre distribuciones
generadas por conjuntos p-vecinos (para algtin p). Entonces necesitamos un ntimero
que nos permita medir qué tanto "se parecen" dos distribuciones.
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Pero algo mas, ya que las técnicas para obtener datos de individuos en una base
estadistica se fundamentan en aplicar distintas consultas a subconjuntos vecinos de
la base, requerimos que las consultas aleatorizadas se mantengan indistinguibles al
aplicarse individualmente asi como al combinarse. Llamamos posprocesamiento a
esta propiedad. Demos formalidad matemaética a esto en la siguiente definicion.

Definicion 2.3. Sea (2, F,P) un espacio de probabilidad, (G,G), (H,H) espacios
medibles, f : G — H una funcion medible y P(G) el conjunto de las medidas de
probabilidad sobre G, a una funcion

DPM(H) : ,P(G)Q — R+
le llamamos medida de privacidad si cumple

Dpu(psllvy) < Dpa(pllv)
para todo p,v € P(G) y f: G — H medible.

Aqui notese que ps(-) = wu(f~'(-)) es una medida en (H,H), Sin embargo tam-
bién la podemos pensar como una medida en {f~'(B) : B € H} C P(G), por lo cudl
la expresion Dpy(fiy||vy) esta bien definida, en términos de evaluar elementos en
P(G).

A la propiedad Dpp(ps||lvy) < Dpa(pl|v) le llamamos posprocesamiento. En-
tonces decimos que Dpy(-||-) es una medida de privacidad si cumple la propiedad
de posprocesamiento.

Como ejemplo de medida de privacidad tenemos la medida clasica de privacidad

diferencial:
Danlpllv) = sup log 220
BeH v (B )
Ya que contamos con una manera de medir la privacidad podemos determinar que
tanto una consulta o una combinacién de consultas aleatorizadas mantienen la priva-
cidad en una base estadistica, es decir, establecer una manera de calibrar algoritmos
en términos de privacidad.

Definicion 2.4. Sea (2, F,P) un espacio de probabilidad, E # 0, (G,G) un espacio
medible, d una distancia en {0,1}¥, Dpys una medida de privacidad en P(G). Un

algoritmo aleatorizado A de E en G es (€, ,€qouy)-Privado si para todo par D, D" C
E tales que d(D,D") < ¢, se tiene Dpy(A(D)||A(D")) < e,z

Equivalentemente un algoritmo aleatorizado A es (e

€ -privado si

IN? OUT)

sup  Dpy(A(D)||A(D")) < €gpr-
d(D,D")<e,

En general con las bases estadisticas se busca hacer indistinguible el resultado de
dos consultas aplicadas a conjuntos adyacentes (usando la distancia de diferencia
simétrica), en estos casos €,, = 1, y decimos que A es e-privado si cumple con
la definicién, donde ¢, = €. Si dos conjuntos D, D’ son adyacentes escribimos
D ~ D', ahora para €,, = 1,y Dpy = Dy un algoritmo aleatorizado A es e-
privado si

sup sup lo w<a
pub'se0  CBIA(D) €8] 7

que es la definicion clasica de privacidad.
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2.2. Privacidad diferencial clasica

Definicion 2.5 (Privacidad diferencial clasica). Un algoritmo aleatorizado A es e-
diferencial privado, si para todo par de conjuntos adyacentes D, D' € {0,1}¥ y para
todo S C G se cumple:

PlA(D) € S| <

PA(D') € S] —

Para revisar ejemplos de algoritmos e-privados es necesario introducir un par de
conceptos.

log

Para una consulta f : {0,1}¥ — R" la sensibilidad global de f est4 definida co-
mo

Bosf = sup [[f(D) = F(D)h-

Este nmero es importante en términos de algoritmos aleatorizados e-privados, pues
los algoritmos més usados consisten en sumar ruido a la consulta por ejemplo si
este ruido es laplaciano, o gaussiano, la sensibilidad representa el desplazamiento de
la media de la distribucién de un algoritmo respecto de otro. Veamos el algoritmo
laplaciano.

Sea f = (fi,..., fn) una consulta como la antes mencionada, definimos el meca-
nismo de Laplace como A : {0,1}¥ x Q — R™ tal que

AD,w) = f(D)+ (X1,...,X,)(w),

donde las X; son independientes, idénticamente distribuidas con X; ~ Lap (O, "‘i—GSf)

y € > 0. Tenemos entonces que A(D); ~ Lap (f(D)Z-, %) Entonces, la funcion
de densidad de A(D) esta dada por

n

_ € _elri — f(D)i n

Tomamos ahora pp) y hacemos el cociente

2o ey { 3 = S0 = = SO},

pA(D’

tomando en cuenta \f(D)z — f(D")i] > |f(D"); —ri| = |f(D); — r;|, escribimos

. sH o{ a1 - 10D}

PA(D)(

Luego |f(D') — f(D)| < A, f, por tanto

ﬁexp{ } = exp{e}.

7

PA D)(

Integrando, tenemos para todo S € B(R")

papy(r)dr < exp{e} [ paw(r)dr.
S S
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Lo cual resulta en que
PlA(D) € S|
sup log ————— < e.
sesen) - PLA(D) € 8]~
Ejemplo 2.1. Consideremos el conjunto
D = {88.68,70.65, 38.45, 58.42,29.32,11.11,60.37, 19.91, 52.04, 96.39},

y D' = D —{96.39}, f la consulta que obtiene el promedio, A el algoritmo alea-
torizado que suma un ruido laplaciano X ~ Lap(0,1), en la grifica tenemos las
distribuciones A(D) y A(D’).

Mecanismos aleatorizados

0.5 1o
— Media={;> X
=1

o
S

9
_1
— Medra—‘;z]x,-
i<

o
w

o
N

Densidad de probabilidad

e
=

o
E

Figura 2.1: Distribuciones de los algoritmos A(D), A(D’).

Otro algoritmo aleatorizado muy usado es el gaussiano, la idea es la misma que
para el laplaciano, A(D) = f(D) + N(0,10?).



Capitulo 3

Divergencia de Renyi

3.1. Introducciéon

Para comprender la funcionalidad de la herramienta presentada en este capitulo,
daremos un breve repaso a conceptos bésicos de teoria de la informacién pensando
en lectores poco familiarizados con el tema.

Supongamos que se tiene un sistema de mensajes codificados en matrices (a;;) de
5 x 2, donde cada elemento de cada matriz es un cuadro, los cuadros toman colores
como valores, pueden ser negros, amarillos, azules o rojos; los mensajes se envian en
digitos dibujados en la matriz. Tomemos por ejemplo un mensaje de dos digitos:

Digito 1: a;; =bsiysolosij=1,
Digito 2: a;; =nsij=2o01i¢€{l,3,5},

donde n quiere decir que el cuadro es negro, a que el cuadro es amarillo y b que el
cuadro es azul y v cuadro verde.

Supongamos que este codigo se transmite a través de un canal de informaciéon que
solo transmite dos valores; por ejemplo 0 y 1, una manera de hacer llegar los datos
correctos es usando preguntas, se inicia la comunicaciéon y por cada cuadro de la
matriz tendremos dos digitos de ceros y unos, el primero corresponde a la pregunta:
. Este cuadro es negro o amarillo? si la respuesta es afirmativa se pregunta ;El cua-
dro es negro? si la respuesta no es afirmativa se pregunta ;El cuadro es azul? No se
necesitan mas preguntas. Para cada pregunta el valor 1 es afirmativo y el 0 negati-
vo. Asi que para comunicar que el cuadro es negro se envia 11, para comunicar que
es amarillo 10, para azul 01, para rojo 00. Para cada color necesitamos dos preguntas.

Podemos interpretar que el costo de transmitir un mensaje con este sistema es
de dos preguntas con respuesta binaria por cuadro, en el lenguaje de teoria de la
informacion, cada cuadro contiene 2 bits de informacion.

Consideremos el caso cuando el codigo esta configurado de tal manera que en 16
cuadros transmitidos 8 veces tenemos negro, 4 veces amarillo, 2 azul y 2 rojo. Con
esta formulacion elegiremos otro sistema para decodificar la informacion, esta vez se
impone un orden en la sucesion de las preguntas.

12
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1.- (El color es negro?
2.- ;Es amarillo?
3.- (Es azul?

El orden esta basado en la frecuencia de aparicién de cada color en este sistema. Asi
para el color negro necesitamos una pregunta, para el amarillo 2, y para los colores
azul y rojo 3. En promedio el nimero de preguntas en este sistema es el siguiente:
L l-l—1 2+1 3+1 3=1.75
— % % — % —x3=1.
2 4 8 8
Mientras que con el sistema anterior el promedio de preguntas es 2, en este caso
diremos que el cuadro en el segundo sistema contiene 1.75bits. Notese que el nimero
de preguntas binarias (con dos posibles respuesta unicamente) asociado a cada color
esté relacionado con la frecuencia relativa del mismo

frecuencia relativa = 2(# preguntas)

En términos de probabilidades, supongamos que X : {2 — F es una variable aleatoria
donde E es a lo mas numerable, con funcion de masa de probabilidad p(x) = P[X =
x]. La cantidad de informacion en bits de X se define como:

== plx)log, p(x).

zel

Esta definicion fue propuesta en 1948 por Claude Shannon |Shad§| este ntmero se
denomina también entropia de Shannon, o simplemente entropia.

Consideremos nuevamente una variable aleatoria X como arriba, esta vez pensan-
dola sobreyectiva para hacer claro el argumento, el nimero de preguntas binarias
determinado por la distribucion de X para llegar al elemento z es log,(P[X = z])
consideremos ahora otra variable aleatoria Y con el mismo dominio e imagen, tam-
bién sobreyectiva, la distribucién de Y impone un sistema de preguntas sobre E, es
decir para llegar a y € Im(Y') necesitamos log,(P[Y = y]) preguntas. Consideremos
ahora una funcién Z tal que a cada elemento x € E le asigna su ntimero de bits con
respecto a la distribucion de Y. El valor esperado de preguntas para cada r € F
con respecto a la distribucion de X esta dado por:

H(X;Y) ==Y p(x)log, q(x).

zel

Donde p es la masa de probabilidad de X y ¢ la de Y. Llamamos a H(X;Y) la
entropia cruzada X a Y. Que podemos interpretar como la cantidad de informacion
en bits en un sistema en el cual los elementos de E tienen una frecuencia relativa dada
por la distribuciéon de X con un sistema de preguntas disenado con la distribuciéon
de Y. Tenemos, también la entropia relativa de X a Y:

Dri(X|[Y) = H(X;Y) — H(X).

Que se interpreta como la pérdida de informacion al establecer un sistema de pre-
guntas dado por una distribucion distinta a la real de los datos. La notaciéon es en
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honor a S. Kullback y R. A. Leibler quienes propusieron esta definicion en 1951 [S
K51].

Redefinamos la entropia, la entropia cruzada y la entropia relativa en términos de
distribuciones de probabilidad y cambiando el logaritmo base 2 (debido a la natu-
raleza binaria de las preguntas) por logaritmo natural; tenemos para distribuciones

de probabilidad P, Q:
= H(P):=—3, P(z)log P(x).
= H(P;Q):=—3, P(x)log Q(z).
= Dir(P||Q) = H(P;Q) — H(P) = ¥, P(w)log 5.

En términos de distribuciones se hace evidente que para que se pueda calcular la
entropia relativa necesitamos que Q(z) = 0 siempre que P(z) = 0, es decir @ < P.
Una generalizacion de la entropia relativa se da por la siguiente expresion:

D(PlQ) = - log [Z (SEiD @(@] |

Para o € (0,1) U (1,00), y distribuciones P, @, tales que Q < P. Tenemos que
lim,—1 Do(P||Q) = Dir(P||Q)(|Erv10] teorema 5). La interpretacion de esta es-
pecie de nueva medida de entropia es en el mismo sentido que en el de la entropia
relativa; s6lo que aqui el pardmetro o nos permite calibrar la sensibilidad de la
medida; conforme a es mayor, es mas sensible a diferencias entre las distribucio-
nes. Esta medida de entropia recibe el nombre de divergencia de Renyi, al fijar dos
distribuciones esta es una funcién creciente con respecto a «.

Ejemplo 3.1. Consideremos dos distribuciones:
p=(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1),
q=1(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.11, 0.09).

0.10

0.08 -

=4
=}
=3

I
o
&

alfa-divergencia

0.02 4

0.00

T T T T
0 2 4 6 8 10
alfa

Figura 3.1: Valor de la divergencia de Renyi D, (p||q) en funcion del pardmetro «

D, (P||Q) recibe su nombre en honor a Alfred Renyi quien la propuso por primera
vez en 1961 |Ren61]. Veamos ahora una definicion més general de esta herramienta
en términos de teoria de la medida.
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Definicién 3.1 (Divergencia de Renyi). Considérese un espacio medible (2, F),
m, v, i medidas sobre (Q, F) tales que p < v < m, sea a € (0,1)U(1,00). Se define
la a-divergencia de Renyi entre p y v como:

1 du\® [ dv '
D = 1 — — dm.
= v [ () (8 am
Observacion 3.1. Dentro de la integral estamos haciendo referencia a la derivada
de Radon-Nikodym.

Observacion 3.2. Ya que
(dps/dm)  dp

(dv/dw) — dv’

Podemos escribir usando cambio de variable:

1 dp\
D () = —— log / (d—) v

Una importante observacion en el contexto de privacidad diferencial es que

(D)
v(D)

lim D, (p||v) = sup log
a0 DeF

Tenemos pues que lim, oo Do (1||V) = Doo(u||v), asi este limite de la divergencia de
Renyi coincide con la medida clasica de privacidad diferencial. En adelante conside-
raremos « > 1 que es el parametro usado en privacidad diferencial.

3.2. Propiedades

Lema 3.1 (Preprocesamiento). [Ervi(] Sea (2, F) espacio de medida, p, v medi-
das sobre este espacio; G una sub-sigma dlgebra de F. Si se denotan plg, v|g las
correspondientes restricciones, entonces se cumple:

Do (plg [l vlg) < Da (pl[v)-

1 dplg\
D =—1 — | dv.
R — og/(dyg) v

Por el lema del apéndice continuamos con

1 d “
Da<u|g||u\g>=a_1log/(E L)) o

Usando la desigualdad de Jensen

Demostracion.

1
D, <
(plg Il vlg) = —
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Finalmente por definicién de esperanza condicional,

]

Observacion 3.3. FEl preprocesamiento nos dice que la pérdida de informacion de
una distribucion v a otra p, cuando estas estdn sobre subfamilias de la o-dlgebra
original de conjuntos medibles, no rebasa la pérdida en el conjunto de datos completo.

La siguiente proposicion presenta dos propiedades importantes de la divergencia
de Renyi. En la primera; si tenemos dos conjuntos de datos S7, y Ss, donde actuando
sobre el primero tenemos las distribuciones u y v, y sobre el segundo y' y v/ en el
conjunto de datos S1® S, la pérdida de informacion de v xv" a pux ii” es igual a sumar
las perdidas de informacion de v a p y de v/ a p/ en S7 y en Sy respectivamente. Con
respecto a la segunda propiedad llamada Posprocesamiento tenemos que la pérdida
de informacién no se incrementa al darle un procesamiento a los datos a través de
una funcion determinista f.

Proposicion 3.1. Lo siguiente se cumple para todo o € (1,00), y distribuciones
[y f, VsV

= Aditividad: D,(p x ||V x V') = Da(p||v) + Do (i ||V).
» Posprocesamiento: Para cualquier funcion determinista f,

Do (f()l[f(v)) < Dalullv),
donde f(u) es la distribucion de f(X) con X ~ p.

Demostracion. s Aditividad:

Do (x|l x v/) =

1
a—1 8

(vxv dim xm

1 du\® (d'\* dv dv'

— 1 o @y ey s
a1 du> (du’) o dm (™
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= Posprocesamiento:
Aqui usaremos la propiedad preprocesamiento; que dice lo siguiente:
Si P, @ son distribuciones sobre el espacio medible (Z,B(Z)) con G < F.
Entonces:

Da(Plg || Qlg) < Da(Pl|Q).

Tenemos para B € B(Z), f(u)[B] = u[f~'B] donde u es la distribucion de X.
Podemos poner entonces:

Da(f(wlf () = Dalptlenllvlor)) < Dalpllv)-
O

La aditividad es valida para cualquier nimero de factores en las entradas de
la divergencia de Renyi. Es decir para todo nimero natural N, para distribucio-
nes fiy, M2, - - -, N, V1, - - ., Uy sobre conjuntos de datos Si,..., Sy consideramos las
distribuciones ®T]:[:1 L, ®2V:1 v; sobre el conjunto de datos ®T]:[:1 S;. Bajo estas
condiciones tenemos:

N
LM{(C%D[%
n=1

La prueba de esto es por induccién, el paso inductivo es una calca de la prueba que
se ha hecho para la propiedad de aditividad en el caso de dos distribuciones.

®) =3 Da ).

n=1 n=1

Observacion 3.4. Dado que la divergencia de Renyi cumple con la propiedad de
posprocesamiento, tenemos que es una medida de privacidad.



Capitulo 4

Distancia Wasserstein

La distancia de Wasserstein surge como una herramienta importante en el anélisis
de la privacidad diferencial de Renyi. A diferencia de otras funciones que comparan
distribuciones, la distancia de Wasserstein captura no solo las diferencias en masa
entre distribuciones, sino también el "costo" de transportar esa masa, lo que resulta
util al analizar algoritmos estocésticos en términos de su estabilidad frente a per-
turbaciones. En el contexto de la privacidad de Renyi, esta distancia se utiliza para
acotar la divergencia entre salidas inducidas por bases de datos vecinas, ofreciendo
una forma de medir la fuga de informacion. Ademas, su simetria y su compatibi-
lidad con técnicas de optimizaciéon convexa la convierten en una herramienta muy
util para analizar mecanismos privados con mejores garantias de privacidad.

4.1. Acoplamientos y transporte

Definicion 4.1. Consideremos (1, F1,P1), (Qg, F2,P2) espacios de probabilidad
(Z1,&1), (29,&) espacios medibles y X : 1 — 21, Xo : Qo — 25 objetos aleatorios.
Por un acoplamiento entre X1 y Xo entendemos un objeto aleatorio (Xl, XQ) sobre
el espacio (Q,ﬁ, ]f”) que toma valores en el espacio medible (21 X 2Z5,&E ® &), y que
ademads cumple:

> d > d
X1 :X1 Y XQZXQ.

Pensemos en las distribuciones u(-) = Pi(X; € ), v(-) = Po(Xy € 1) y (1) =
P((X1, X3) € -), bajo las condiciones de la definicion de arriba decimos que v es
un acoplamiento de p y v y escribimos v € I'(u, ). Donde I'(u,v) es el conjunto
de todos los acoplamientos entre p y v, el cual no es vacio porque siempre esta la
medida producto p X v.

Los acoplamientos también son llamados planes de transferencia. En este con-
texto v se piensa como una medida de la "transferencia" de conjuntos en Z; hacia
Z,. Estamos pensando aqui que se esta "transportando", o también transformando
el conjunto Z; en el conjunto Z,, y v mide como se reparte Z; en Z,, es decir
Y(A x Z9) = pu(A) dice cuanto de A llega a 25, v(21 x B) = v(B) dice cuanto de
Z, se ha puesto en B,y 7(A x B) cuanto de A se ha puesto en B.

Ejemplo 4.1. Supongamos que se tienen los conjuntos U = {x1,xe,x3, 24} yV =
{y1, 92} con distribuciones p,, = (0.75,0.10,0.10,0.05), p,, = (0.75,0.25) un acopla-

18
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miento es la medida producto p, x p, . Este plan de transferencia queda esque-
matizado en la siquiente tabla:

u/v (3 Y2 V
Ty 0.5625 | 0.1875 | 0.75
To 0.075 | 0.025 | 0.10
T3 0.075 | 0.025 | 0.10
T4 0.0375 | 0.0125 | 0.05
U 0.75 0.25 1

Cuadro 4.1: En este caso el plan de transferencia queda determinado por la cantidad
de z; que se pondré en y;

La cantidad de x1 que se esta transfiriendo a V' se reparte sobre los elementos
de V', en este caso y1, Y2, segun el plan de transferencia dado por py X py, es decir
la cantidad de x| transferida a vy, es

(pU X pv)({xl} X {yl}) :pU(x1>pV<y1) = 056257

mientras que la cantidad de x1 transferida a 1o es

<pU X pv)({xl} X {y2}) = pU(JJ1)pV(y2) = (0.1875.

Para cualquier plan de transferencia p la cantidad de x1 que se transfiere a 'V es la
misma: p(x1 x V) = p), (x1)=0.75.

La nociéon de transporte se construye a partir del concepto de plan de trans-
ferencia, consideremos el mismo conjunto del ejemplo 3.1, ahora introduciremos
una funcion ¢ : U x V' — RT que se puede pensar como el costo de transportar la
medida; por ejemplo ¢(z1,y2) es el costo de transportar la medida de z7 a yo. De esta
manera podemos obtener la media del costo ponderada por la distribuciéon (plan de
transferencia) p, X p,:

> clwn ) oy % py) (2, 5).
i,J
Al par de medidas p,,, p,, se le asocia el nimero:

el’ s —
YET (g 5Py, ) Iy

),

A este ntimero lo pensamos como la manera 6ptima de transportar la medida p,, en
la medida p, con respecto a la funcion de costo c.

Maés en general si X y ) son espacios métricos completos y separables, p y v dis-
tribuciones de Borel sobre X' y Y respectivamente, ¢ : X x Y — R" una funcion
continua. El costo total de transportar p a v asociado a v € I'(u, v) con respecto a

¢ se define como:
Cly) = / c(x,y)dy(z,y).
XxY
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Nosotros nos colocaremos en una situaciéon mas especifica. Sea Z un espacio de
Banach, tomemos la funciéon de costo como la distancia inducida por la métrica; si
py v son dos distribuciones de Borel sobre Z, el costo total asociado a v € I'(u, v)
se calcula:

Cy) = ||z —ylldvy(z,y).

22
Partiendo de estos conceptos podemos obtener una distancia sobre un conjunto de
medidas.

4.2. Espacio de Wasserstein

Consideremos P(Z) el conjunto de las distribuciones de Borel sobre Z. Definimos
el p-espacio de Wasserstein en Z como:

Wy(2) = queP(2): /HIH”du(fﬂ) <0

En la siguiente definicién tenemos una distancia sobre este conjunto la cual lo con-
vierte en un espacio métrico [Vil03)|.

Definiciéon 4.2. Sea Z espacio de Banach, p > 1 . Para u, v € P(Z) se define:

YET (1)

Wy(p,v) == inf /x—yl”dv(%y) :
22

En este trabajo estaremos usando un caso limite de esta distancia. La llamamos
distancia oo-Wasserstein.

Definiciéon 4.3. Sea Z espacio de Banach. Para p, v € P(Z2) se define:

Weo(p,v) == inf esssup||X —Y]|.
YEL (V) (XY )~y

En el siguiente lema se prueba la conexion entre p-distancia y la distancia infinito.

Lema 4.1. Sean p,v € P(Z). Se cumple:

lim W,(p,v) = Woo (s, v).

p—o0

Demostracion. Para = v es inmediato ya que para todo p se tiene
Wy(j1,v) = 0 = Wi (11,).

Consideremos entonces p # v, sea v € ['(u,v), ¢ > 0,y E. = {(z,y) € Z? :
||z — y[| > esssupx yyo, [|[X = Y| — €}; para (z,y) € E. tenemos:

p
|z =yl > (esssupHX—YH —€) -

(X’Y)N’Y
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Integrando respecto a 7:

/Hw—y\l”dv(x,y)Z/ xylpdv(x,y)>/<
Z Ee EE (

21

esssup||X — Y|

XY )~y

— e) dy(z,y).

Obteniendo el infimo sobre los acoplamientos, y luego raiz p-ésima:

inf
YEL (p,v)

WP(:LLv V)

inf
el (p,v)

v

inf
el ()

inf
YEL (p,v)

inf
YEL (p,v)

lim inf W,(u, v)
ploo

> lim inf

p
esssup||X —Y|[ —¢ | dy(z,y)
E. (va)’\/’y

<ess sup|| X = Y|| —¢

(X,Y)ny

(X,Y)N’Y

<ess sup|| X = Y| —¢

<ess sup||X = Y]] —¢

(va)N'y

esssup|| X —Y|| —¢
(va)N'y
Tomamos limite inferior y considerando que v(E.) € (0
suficientemente pequenio para que (esssupx.y)., [|[X —Y|| -

inf
ptoo Yel(pw) \ (X,Y)~ry

(ess sup|| X — Y| — 6) v(E:)

==

3|

inf
yel (p,v)

tomando € lo

==

inf esssup||X —Y|| —e.
YEL (V) (XY )~y

Llevando ¢ a 0 este desaparece de la desigualdad:

lim inf W, (p,v) >
ploo

inf
Y~ (v) (XY )~y

esssup|| X — V|| = Weo (1, v).

Por otro lado; para v € I'(u, v), si (X,Y) ~ v tenemos que y-casi seguramente

| X = Y| < esssup, || X —

Y|, luego para p > ¢:

[|X =YX = Y7 < (esssupHX — Y]l

(va)’\/’y

Integrando con respecto a la medida ~:

/ |z —y||P~ |z — yl|?dy(z,
Z

esssup||X — Y|

N
2 \(XY)

Y )~y

(X7Y)N’Y

(ess sup||X = Y|

p—q
> [|X =Y.

pP—q
> ||z —y[|%dy(z,y)

) / Iz — ylltdy(z, ).
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Luego tomando raiz p-ésima:

/ |z =yl — yl[*dv (2, y)

z

< | esssup|| X — Y| ||z — y[|dy(z,y)
(va) Z

Tomamos infimo sobre los acoplamientos de p y v:

1
P
inf (/ |z — y| [P~z — yl|%dy(z, y))
vEL (V) Z
p—gq
P
< inf [esssup||X —Y|| ||z = yl|*dv(z, y)
YEL(1v) \ (X,Y)~y =z

P—gq E
p
< inf | esssup||lX —Y|| inf ||z —y||%dy(x,y) | .
YET (1) \ (X,Y)~ry Y€l (pv) 2

Podemos escribir:

SR

=

P—q

WP(N? V) S inf <esssup||ac—y||> Wq(/% V>%

1€l (mv) \ (X,Y)~y

q

< finf esssup||X — Y| inf <esssup||X—Y||> W, (11, v)7.

 YED() (XY )~y YEL(1v) \ (X,Y)~ry
Tomando limite superior sobre p:

lim sup W, (¢, v) < Weo(p, v).

ptoo
Concluimos:

lim W, (p,v) = Weo(p, v).

p—0o0

Es de ayuda recordar que en notaciéon de conjuntos podemos escribir:

Woo (1 v) := tnf {{[z — yl[ro() v € T(n,v) } -

Veamos ahora que W, (u, ) es una distancia en Py (Z), que es el conjunto de todas
las medidas de soporte compacto sobre Z:

1. Supongamos p # v, entonces existe A subconjunto medible de Z tal que
p(A) # v(A), sin pérdida de generalidad suponemos p(A) —v(A) > 0. Ya que
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|z = yllee(zxay) < |2 — ylle(zxz,4); donde para ||z — y||po(zxa,,) tenemos:

ZxA—{(y,y):y € A}]

Zx Al =v[{(y,y) -y € A}]

Yz, y) € Zx At ||z —y|| > 0] =]
ol
i(A) =y [Ax Z]
n(A
y

v

) —v(4) > 0.

Por tanto ||z —y||r~(zxa,y) > 0 paratodo vy € I'(v, j1), asi para todo vy € I'(v, p)

Weo(v, 1) >0
2. Para todo p > 1 tenemos que W,(u, 1) = 0, de donde W (u, 1) = 0.
3. Para revisar la simetria tenemos:

Woolv, ) = lim Wy(v, ) = lim Wy (s, ) = Woo(p, v).

4. Desigualdad triangular: Para todo u,v,( € P(Z) se tiene:
Woolw, p) = lim Wy(v, u) < lim (W (v, €) + Wp(C, 1) = Woo (v, )+ W (G, 1),

Cerramos esta seccion con el siguiente lema, el cudl es uno de los soportes impor-
tantes de los resultados principales de este trabajo.

Lema 4.2. Los siguientes enunciados son equivalentes para cualesquiera distribu-
ciones [, v sobre Z

1) Woo(p,v) <s.
2) Eziste un vector aleatorio (U, V') tal que U ~ pu, V ~ v yP[||U = V|| < s] = 1.
3) Existe un vector aleatorio (U, V) tal que U ~ p, U+W ~ v yP[||W]| < s] = 1.

Demostracion. 1) = 2):
Tenemos que:
inf esssup||X —Y|| <s

YEL (V) (X,Y)~ v
implica que para todo ¢ > 0 existe una medida vy € I'(u, v) tal que esssup ||[U—=V|| <
s+econ (UV)~~,donde U~ p,y V ~ v, tenemos que inf{x € R: P{w € Q:
[|U(w) = V(w)|| > 2} =0} < s+ e de donde tenemos que existe z € R, x < s+ 2¢
tal que P{w € Q : ||U(w) — V(w)|| > =} = 0. Asi cuando P es una medida de proba-
bilidad tenemos P[||U — V|| < s+ 2¢] = 1. para todo ¢ > 0. Finalmente tomando el
limite € — 0 se concluye P[||U — V|| < s] = 1.

2)=3):
Definimos W =V — U, entonces V = W + U, y por tanto W + U ~ v y ademas
PIIWII < s].

3)=1)

Definimos V' = U + W; ya que P[||U — V|| < s], tenemos que P[||[U — V|| > s] =0
por tanto inf{z € R : P[||[U — V|| > 2] = 0} < s, es decir esssup ||[U — V|| < s, y asi
tenemos Wy (p, ) < s. O
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Garantias de Privacidad en ICR

5.1. Algoritmos iterativos

En aprendizaje automéatico (Machine learning) es comun encontrar algoritmos
iterativos, es decir que actualizan progresivamente sus parametros en una sucesion
de iteraciones. En cada iteracion el algoritmo usa un dato, o un cierto subconjunto
de datos del conjunto de entrenamiento para lograr una direcciéon de mejora y asi ir
ajustando los parametros del modelo.

En este contexto se ha demostrado que si no se publican los resultados parciales
del algoritmo iterativo, la privacidad mejora [Fel+18|. Mas en especifico se esta pen-
sando en algoritmos aleatorizados construidos usando funciones contractivas como
por ejemplo el descenso ruidoso del gradiente.

Ejemplo 5.1. El algoritmo "descenso ruidoso del gradiente” hace mas eficiente la
exploracion del espacio de pardmetros, evitando que la optimizacion se estanque en
minimos locales o zonas planas, ademds de prevenir o reqular el sobre ajuste. La
actualizacion de pardmetros de este algoritmo es la siguiente:

M(w) =w —nVL(w) + (.
Donde n € R es el radio de aprendizaje, ¢ el ruido es una variable aleatoria y V es
el gradiente.

Llamamos ruido a una variable aleatoria X ~ ( o a su distribucién, y deno-
minamos sucesion de ruidos a una sucesion de variables aleatorias { X, },er 0 de
distribuciones {(, }ne; mutuamente independientes.

Definicién 5.1 (Contraccion). Para un espacio de Banach (Z,||-]) una funcion
¢ Z — Z se dice que es una contraccion si para todo x,y € Z

lo(z) — o) < [l — -
Una definicion general de los algoritmos en consideracion es la siguiente:

Definicion 5.2. [lteracion de contracciones con ruido (ICR)] Dado un estado alea-
torio inicial Xy € Z una sucesion de contracciones {¢; : Z — Z}i<r, y una sucesion
de ruidos {(; },op definimos la iteracion de contracciones con ruido (ICR) con la si-
quiente regla de actualizacion:

X = ¢t<Xt—1) + Zta te {17 S 7T}

24
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Donde Z; ~ (; para cada t € {1,...,T}. Después de T' pasos obtenemos la variable
aleatoria Xt la cual serd denotada como IC Ry (Xo, {¢t}th , {Ct}th) )

5.2. Privacidad en algoritmos iterativos

Retomamos la divergencia de Renyi (deﬁmcio’n en la observacio’nresalta—
mos que esta divergencia es una medida de privacidad, por tanto hay una versiéon de
algoritmo aleatorizado privado (definicion para esta medida, so6lo cabe destacar
lo siguiente; para cada « tenemos una divergencia de Renyi distinta. Se plantea una
definicion de privacidad diferencial adaptada para incorporar a a como pardmetro.

Definicion 5.3. [Privacidad diferencial de Renyi (RDP)] Sea o € [1,00], € > 0, A
un algoritmo aleatorizado es (a,€)-RDP si

sup Do(A(D)||A(D")) <e.

D~D’

Para estudiar la privacidad (medida con D,,) en algoritmos /CR introducimos las
siguientes definiciones. La idea es captar la distribuciéon de salida en cada iteracion,
més en especifico la distribucion pushforward inducida por un mapeo contractivo o
contraccion.

Definiciéon 5.4 (Divergencia de Renyi deslizada). Sean pu y v distribuciones de-
finidas en un espacio de Banach (Z,||-||). Para pardmetros z > 0 y a > 1, la
divergencia z-deslizada de Renyi entre p y v se define como:

DS (ullv) = _if  Do(p|[v).

W EBwo (1,2)

Donde By._(u,2) es la bola cerrada con centro en u y radio z con respecto a la
distancia W.

z-vecindad de u en la distancia W,

Figura 5.1: Vecindad de radio z en el espacio métrico (P (Z2), Wy).



26 CAPITULO 5. GARANTIAS DE PRIVACIDAD EN ICR

Vecindad W, de una distribucién normal

Figura 5.2: Asi se ven las densidades dentro de una vecindad de una distribucion
N(0,1), las distribuciones en la vecindad no necesariamente son normales, si no
que corresponden a distribuciones que estéan cerca en términos de la distancia en el
espacio donde las variables aleatorias toman valores.

Proposicion 5.1. La divergencia deslizada de Renyi satisface las siguientes condi-
ciones para cualquier par de medidas i, v y a € (1,00).

» Monotonia: Para z € (0,2'), DS (u||lv) < D (u||v).

» Desplazamiento: Para todo v € Z, D&HIH)(;LHV) < Dy (p * x||v) donde x
denota la distribucion de la variable aleatoria constante x, y * la operacion
convolucion.

Demostracion. Para monotonia tenemos; ya que z < 2/, By (11,2) € Bw., (1, 2')
por tanto:

imf  Do(i]v) < inf  D,(]v).

1 €Bwoo (1,2) W EBwo (1,2)

Luego para el desplazamiento notemos que

Woo(p, pxx) = inf esssup||X — Y|
YET (1 p5%) (XY )~y

< esssup || X =Y
(X,Y)~(X, X +a)

= esssup ||X — (X +2)
(X,Y)~(X, X +2)

= esssup ||z||
(X,Y)~ (X, X +2)

=[]

Por tanto p* x € By, (i, ||]]), asf

inf  Da(u|lv) < Dalp*x]lv).

W E€Bwg (1,|]||)
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Vecindad W, de una distribucién normal

Figura 5.3: 11 % x esta dentro de la vecindad de radio ||z|| alrededor de p.

Definicién 5.5. Para una distribucion ¢ sobre un espacio de Banach (Z,]|-|])
definimos la magnitud de ruido de radio a como:

R (C,a) = sup Do (¢*x|[C).

z:||z]|<a

La magnitud de ruido de radio a nos permitird poner una cota a la privacidad
de un algoritmo ICR en funcién de los ruidos involucrados en su construccion.

Lema 5.1 (Reduccién de ruido). Sean z > 0, p, v y ¢ distribuciones sobre el espacio
de Banach (Z,]]-||). Entonces para todo a > 0:

DY (px¢llv * ¢) < DEX (ullv) + Ra (¢, a).

Demostracion. Primero asumamos z = 0. Ya que W (Z) es completo existe y tal
que Weo(p, 1) < ay Do(p|lv) = Dga)(,tu). Sea (U, W) la variable aleatoria dada
por el lema[{.d inciso 3). De ahi tenemos P[||W|| <a] =1, U ~pu, y U+ W ~ y.
Sea también V ~ v, y finalmente, Y ~ ( variable aleatoria independiente de las
anteriores. Podemos escribir:

Do(p* |y x () = Do(U+ Y|V +Y)
= D (U+W =W +Y||V+Y).

Usando la propiedad de posprocesamiento con la funcion determinista (z, y) ER r+y
tenemos

Do(U+W =W +Y||[V+Y) < Do (U+W, =W +Y)[|(V,Y)).

Por tanto:

Do (||v # ¢) < Do (U+ W, =W +Y)[|(V.Y)). (5.1)
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Ahora usamos la independencia para obtener:

exp [(a — 1) Dq ((U+W ~W+Y)|(V,Y))]

w+w-w+v) (v, Y)
//< fovy)(v,y) ) [y (v, y)dvdy

// (f—W+YU+W y|Uy)U+W( )>afv(v)fy(y)dvdy

(B o (2= )
< (580 i e (2259 )

- [U57) o sy [ (RE5E0) a2

Luego consideremos lo siguiente:

fosw—wiy (v,9)
fU+W(U)
_ [ fosw—wiyw (v, y, w)dw
fU+W(U)
/f—W+YU+WW (ylv, w) forww (v, w)d
w
foiw(v)

f7W+Y|U+W(y|rU) =

= / f-wiviorww (y[v, w) fwioew (w|v)dw

De aqui escribimos:

J (B o

:/( fW+Y|UfJ;VI(/;JI/I)/(y’U,w)

fW|U+W(w|U)dw> fy (y)dy

Ya que o > 1 usamos la desigualdad de Jenssen con respecto a fyy 4w (w|v)dw

< / { / (fw*”f; o (y'”’w>)afW|U+w<w|v)dw} fr (9)dy.

Luego usando el teorema de Tonelli:

:/ {/ (f‘WJrY'UfJ;”(’g(y’“’w))afy(y)dy} Fovisw (w]o)dw

fewaviosww (Yo, w)\*
<esssup [ (PRt ) gy

Ahora tenemos:

f—W+Y|U+W(y|U))a
e (L

< esssup esssup/ (f_W+YU+WW(y|U7w)) fY(y)dy
v'er w~APy fY(:U)
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Regresando a (5.2) hemos llegado a que:
exp[(a = 1) Do (U + W, =W + Y)[|(V.Y))] <

/ (—fU+W(U) ) ) fv(v)dv ess sup esssup / (f_WJrY'UJFW’W(le’ ©) ) ) fy (y)dy

fV(U) v~y w~Pyy fY(y)

Hay que detenerse aqui un momento para notar lo siguiente

f—W-ﬁ-Y,U-H/V,W(y? v, ’U)) _ fY7U+W,W(y + w, v, w) X
fosww (v, w) fosww (v, w)

yva que Y es independiente al resto de las variables

fY,U-‘rWW(y + w, v, ’lU)

Soeww (v, w)
Frmwow) T ww)
= fr(y +w)
= fy-w(y).
Es decir:
Jowayviosww (ylv,w) = fy—w(y).
Asi que:

exp (o — 1) Do (U + W, =W + Y)[|(V,Y))]

< (fext ) i sy e [ (S02) s
(fUJrW ) fv(v)dv esssup/(f wav (y )> fr(y)dy

w~ Py ( )
foew(v )) (fxw( )>
< [(Z2) s s [ (LW g gan
Regresamos a la divergencia de Renyi reescribiendo de la siguiente manera

/(ﬁffc—vgj;}))afv(v)dv x:ﬁﬁa/(@;—ig)ffy(y)dy

=exp [( — 1) Do (i||v)] sup exp (v — 1) Do (¢ * x]|C)]

z:f|z][<a

= exp [(a — 1) Dy (1] |v)] exp [(a —1) sup Dq(C * XHC)]

z:al[<a
— exp(a — D) Dai|[1)] exp (@ = 1) Ra(C, )]
Retomando desde la desigualdad (5.1) tenemos:
Do+ Cllv Q) < DE(ullv) + Ra(C, a).
Ya esta para z = 0. Ahora definimos para z > 0:
x  sillz|| <z,

he(w) = {%Hz stz < |Ez:||
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Notemos que ||h.(x)|| < z para todo z, y si ||z|| < z + a, tenemos
e = ha(@)l] < [loll = (@)l < 2+ a+ (@] < a

Consideremos ahora ' tal que D, (i/||v) = D& (u]|v); consideremos la variable
aleatoria (U, W) tal que ||W|| < a con probabilidad 1, U ~ py U+ W ~ u'.
Establezcamos Wy = h, (W), y Wy = W —W;. En base a las observaciones anteriores
tenemos ||[W|| < z y ||[Ws|| < a con probabilidad 1. Luego entonces tenemos:

Weo(pt % C, o Py, x () = inf esssup||r —
(xGxPwix Q) = o (:c,y>~5|| yll

< ess sup |z — v

(zy)~(U+Y,U+W1+Y)

= esssup ||[U+Y —(U+W;+Y)|
(U+Y,U+W1+Y)

= esssup |[W]|
(U+Y,U+W;+4Y)

<z
Asf que px Py, x ¢ € By (p* ¢, 2), por tanto:
DAWU+Y||V+Y)<DJ(U+W, +Y||V+Y)
< DU 4+ Wi||V) + Ra(C,a)  porel caso z = 0.

Luego tenemos también, en analogia a lo anterior W, (i % Py, , p x Py, * Py, ) < a,
implica:

DU +Wh||V) < Do(U 4+ Wy + Wa||V)

= D (U+W||V)
= DEH@Iv).
Concluimos:
D (o Cllv*¢) < DET (pllv) + Ra(¢, ).
[
Lema 5.2 (Contraccion reduce DS). Sea z >0, y ¢, ¢ contracciones en (Z,01-1D)

tales que sup, ||p(z) — ¢ (2)|| < 5. Entonces para variables aleatorias X y X sobre
Z se cumple:

D (@(X)]l¢' (X)) < DP(X|1X).
Demostracion. Usamos el lemal|4.4 Para establecer una variable aleatoria Y tal que:
DY(X||X") = Da(Y]|X")

con P[||Y — X|| < z] = 1, es decir, sea Y tal que el infimo se alcanza, como se tiene
W (Py,Px) < z por el ya citado lema, tenemos que con probabilidad 1 se cumple
la desigualdad.

Luego observamos que, para esta variable aleatoria Y con probabilidad 1 tenemos,
por ser ¢ contraccion y por hipotesis:

p(X) = (V)] = [[6(X) = d(Y) + ¢(Y) — ¢'(Y)]]
< ||o(X) = d(Y)[| + [[6(Y) — ¢' (V)]
<X =Y|[+s
< z+s.
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Es decir; P[||¢(X) — ¢'(Y)]|| < 2+ s] = 1, nuevamente usando el lema |4.2 tenemos
que Wao(Bycx), Pyry) < 245, por tamto: DE(S(X)[[¢/(X) < Dald/(V)|6/(X")
por definiciéon de divergencia de Renyi deslizada. Ahora usando la propiedad de
post — processing para la divergencia de Renyi tenemos:

DEFNS(X)]10(X") < Dal(¢(V)[|¢'(X') < Da(Y]|X) = DO (X[|X).
0

El siguiente teorema da garantias de privacidad para algoritmos ICR calibrando
los ruidos que se suman en cada iteracion.

Teorema 5.3. Sean Xr, Xy salidas de IC Ry (Xo, {¢:},{¢}) y IC Ry (Xo, {6}, {¢))
respectivamente. Sea s, > sup, ||¢y(z) — ¢;(x)||. Sea ay,...,ar una sucesion de ni-
meros reales positivos y sea zy = Zz‘gt S; — Zz‘gt a;. Stz > 0 para todo t, entonces:

T
D(ZT) XT||X Z (Gt ar).
En particular st zr = 0, entonces:
T
Do (Xr||X7) < ZRQ(Ctaat)-
t=1

Demostracion. Procedemos por inducciéon sobre T'. Caso T' = 1: Sea Z; ~ (, tene-
mos:

X1 =¢1(Xo) + 244 y X = ¢1(Xo) + Z1.
Para T' = 1 tenemos a; > 0, s; = sup, ||¢1(x) — ¢\ (z)|], y 21 = s1 — a1 bajo la
suposicion z; > 0. Usando el lema de reduccion de ruido tenemos:
DSV(X4||1X7) = DS (¢1(Xo) + 21|64 (Xo) + Z1)
< D (1(Xo)| |6 (X)) + Ra(Cryan).

Luego por el lema Contraccion reduce D tenemos:

D) (1 (Xo) |16 (Xo)) + Ra(Crsa1) = DE) (¢1(Xo)|| (X)) + Ra(C1, a1)
DO (Xo||Xo) + Ra(Cryar)

a

d
= a(C )

| /\

Concluimos el caso T = 1:
DGV(X4[|X]) < Ra(Givan).

Supongamos ahora que se cumple para T = k por demostrar que es valido para
k + 1: Usando el lema de reduccién de ruido:

D) (X 4[| X, ) = DEErsre=aned) (g (X)) + Ziia || 60 (X0) + Zisr)
(

D;”S’““) (Dr4+1 (XD (X)) + RalChrs arsn)-

IN
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Por Contraccion reduce D((f)

D) (X[ Xia) < DY (Xl 1X5) + Ra (G @)

Por hipoétesis de induccién:

D&Zk+1)(Xk+1||Xllc+1) < Z Ro(Giy ai) + Ra(Cry1, Q1)

i<k
[l

Este teorema es central en las pruebas de resultados sobre la conservacion de la
privacidad en algoritmos de descenso del gradiente. Veamos un ejemplo tomado de
|[Fel+18|, Proyected noisy stochastic gradient descent (PNSGD).

Algoritmo: Proyected Noisy Stochastic Gradient Descent (PNSGD) en
RTL

Entrada: Conjunto de datos S = {x1,...,x,}, funcion f: K x X — R convexa en
el primer argumento, tasa de aprendizaje n, punto inicial wy € K C R", pardmetro
de ruido o.

Procedimiento: Para cada iteracion ¢t € {0,...,n — 1} hacer:

Vi1 = wy — 0 (Vo f (o, 21) + Z0),  Zy ~ N(0, 02[(1)
W41 £ HK(UH-l) = arggglg ”0 - Ut+1||g'

Salida: El punto final w,,. En este momento destacaremos que

ozaZ

Ro(N(0,0%),a) = —, 5.3
(N(0,0°T),0) = 5 (53)
esto se deduce facilmente del siguiente resultado que se puede encontrar en |LV87]
pag. 45.

1 _
= E(m — 110) S (o — ).

Da(N(poX)[ [N (11, %))
El siguiente resultado es una aplicacion del teorema[5.3

Teorema 5.4. Sea K C R" un conjunto convexo, {f(-,z)}rcx una familia de fun-
ciones L-Lipschitz, con gradiente B-Lipschitz sobre IC. Entonces para todo n < 2/,
c>0,a>1,te{l,...,n}, wy €K, S € X", PNSGD(S,wy,n,0) satisface

o —2 )\ _RrDP
n+1-—t

para su t-ésima entrada, donde € = 20%2

Demostracion. Consideremos S = (z1,...,2,) ¥ S" = (T1, ..., 41, T}, Ti1, -+, T)
De los teoremas y en el apéndice deducimos que PNSGD(S,wy,n,0) es
una algoritmo IC'R (definicion bajo la hipotesis de que V f es (-Lipschitz y
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n < 2/B, ya que la proyeccion es una contraccion y también gradiente. El algoritmo
ICR sobre el conjunto S se conforma por las contracciones

bi(w) = Mg (w) =0V f (U (w), z:),

y los ruidos Z; ~ N(0, (no)?I), para S’, las contracciones quedan como v = v,
excepto para t, aqui f esta evaluada en z}; ya que para todo z € X, y w € K f es
L-Lipschitz tenemos:

sup || (w) — g (w)l|
= sup |[nV f (L (w), z¢) — nV f (L (w), 23)[| < 2nL.

. oL .
Aplicamos el teorema con ay,...,a;_1 =0y as...,a, = n—75+1> donde definimos

s = 2nL y s; = 0 para ¢ # t. De esta manera z; > 0 para ¢ < n, con z, = 0. Por
este mismo teorema y por la expresion [5.3) se obtiene

n

Q 20 L*
D, (X,]X;,) < Pl
(Xl X) = 2n%02 Zat T oi(n—t+1)

=1
]

Una aplicacion sencilla, pero ilustrativa es la regresion lineal. Considérese un
conjunto de datos S = {(x;,¥;)}", donde x; € R? y y; € R, como espacio de pe-
sos K = {w € R?|||w||, < R}, funcién de aproximaciéon hy(x;) = (w,x;) donde

w € K es el vector de pesos, la funcién de pérdida es el error cuadratico medio

f(W7 Xi) = %(yz - <W>Xi>)2'

El gradiente de la pérdida es Vf(w,x;) = ((w,x;) — y;)x;. Notese que, cuando
l|x:i|l2 < 1y |yl <1, entonces f(w,x;) es L-Lipschitz con L = R + 1, el gradiente
es 1-Lipschitz.

Asiparatodon <2,0>0,a>1,t={1,...,n}, wo € K, Sy ¢ ~ N(0,0%) tene-
mos, por el teoremal5.4, que el algoritmo ICR (wo, { f (-, x;) 1=y, {C}) es (o, —2=) —

' 41—t
- - -, 2(R+1)? .
RDP para la t-¢sima iteracion, donde € = ==~ para todo 1.




Capitulo 6

Conclusiones

Se dispone de un método garantizado para calibrar la privacidad en algoritmos
de descenso del gradiente aplicados a funciones de pérdida ampliamente utilizadas,
bajo ciertas modificaciones como la proyecciéon sobre conjuntos convexos. Este enfo-
que es factible siempre que se pueda acotar una region alrededor del minimo global.
En tales condiciones, al anadir ruido en cada iteracién y posponer la publicacion de
los resultados hasta el final, se asegura la garantia de privacidad.

La relevancia de este teorema radica en que permite resguardar la informacion del
conjunto de entrenamiento en algoritmos de aprendizaje automéatico. Ademas, la
teoria alcanza un nivel suficiente de generalidad mediante el uso de la herramienta
matemaética conocida como magnitud de ruido de radio a, lo que ha posibilitado
parametrizar distribuciones arbitrarias para el ruido agregado en cada iteracion de
los algoritmos. Asimismo, la distancia infinito de Wasserstein permite calibrar el
radio alrededor de la distribucion inicial en el cual la garantia de privacidad queda
asegurada.
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Apéndice A
Probabilidad y Medida

Usaremos las definiciones comunes de o-algebra, espacio medible, medida y me-
dida de probabilidad. Un espacio de Banach es un espacio vectorial normado y
completo en la métrica definida por su norma. Si p y v son dos medidas sobre el
espacio medible (2, F) decimos que v es absolutamente continua con respecto a f
cuando v(A) = 0 siempre que u(A) =0 para A € F.

A continuacién se exponen un conjunto de definiciones y resultados clasicos en la
teoria de la medida y de probabilidad. Comenzamos esta secciéon recordando con-
ceptos elementales, esto sera 1til también para indicar la notaciéon que usaremos a
lo largo de este trabajo.

Si X es un conjunto no vacio escribimos o(X) para denotar a la o-dlgebra gene-
rada por dicho conjunto; es decir la o-algebra mas pequena que contiene a X.

La definicion [A.1] asi como el teorema [A.1], y el Corolario son tomados del

libro de Gravinsky |Gra09| las demostraciones se pueden encontrar ahi mismo, el
tema que se aborda es el teorema de clases mondtonas.

Definicion A.1. Consideremos un conjunto X # ().

= Un conjunto C C {0,1}*, C # 0 se llama w-sistema si es cerrado bajo inter-
secciones finitas.

= Un conjunto L C {0,1}%, £ # 0 se llama un sistema de Dynkin cuando:

1.- X eL.
2-SiE,FelLyF CE, entonces E—F € L.

8.- Si {Ep}nen C L es una sucesion creciente, entonces | J, oy En € L.
El siguiente teorema es llamado de clases mondtonas o teorema de Dynkin.

Teorema A.1l. [Clases Mondtonas| Sean X # 0, C € {0,1}* un w-sistema, y L un
sistema de Dynkin tal que C C L, entonces o(C) C L.

Luego el siguiente corolario es una observaciéon que indica en qué sentido este
teorema es 1util.
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Corolario A.1.1. Si C C {0,1}* es un w-sistema, entonces:
o(C) = ﬂ{D sistema de Dynkin en {0,1}* : C C D}.

Dado que haremos uso frecuente de la derivada de Raddon-Nikodym recordaremos
el teorema que introduce el concepto, su demostracion se puede encontrar en [Roy68]|.

Teorema A.2 (Radon-Nikodym). Sea (2, F, 1) un espacio de medida o-finito, v
una medida definida sobre F tal que v < . Entonces existe una funcion medible
no negativa f unica en casi todas partes respecto a p, tal que para todo A € F se

cumple:
U(A):/fd,u.
A

El significado de la expresion cast todas partes respecto a p es el habitual en el
contexto de analisis real, en este caso para todo g : Q@ — RTU{0}, p{w € Q: f(w) #
g(w)} = 0. A la funcién medible f que proporciona el teorema se le llama derivada
de Radon-Nikodym, usamos también la siguiente notacion:

dv
@ = f.

Los siguientes lemas y proposiciones son propiedades de la derivada de Radon-
Nikodym que se usaran en desarrollos posteriores.

Lema A.3. Sea (2, F) un espacio medible, u, v, m medidas sobre este espacio tales
que pp K v < m. Se cumple:

s Para cualquier variable aleatoria X : €2 — R:

/Xdu:/X%dm.
dm

= Para Z—Z # 0 casi en todas partes [m], entonces EZ%ZE; =4

Demostracion. Para todo A € F tenemos:

dv
/%lAdi(A)/lAdl/

Siguiendo el razonamiento canonico; si f es una funciéon simple con valores f(w) =
>, a;l;(w) integrando:
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:Zaiy(Ai) /fdl/.

Luego toda funcién medible positiva g puede ser aproximada por alguna sucesion de
funciones simples, por ejemplo {g,}. Usando la propiedad (lema) de convergencia

monodtona tenemos:
d d
& pdm = [ L lim gpdm
dp djt ntoo

= lim @ gndm
dp

Finalmente si A es cualquier funciéon medible escribimos h = h™ — h™, y:

[ -

d
— d
dm m

[

/%thd /—h dm
/fﬁdy — /hdv
e
-/

hdv.

Para el segundo punto se tiene para todo A € F:

dp du du dv
dm = = —dv —d
/A d = #(A) / v v dm ™"

De donde c.s.-m se tiene:
du du dv

dm ~ dvdm’
Y se concluye el segundo punto si dv/dm # 0 casi seguramente m. [
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Si Fi y Jo son dos o-algebras, denotamos:
F1® F ZZO‘{AXBZAGJ—"l Yy BEJTQ}.

Ademaés p X v denota la tnica medida (|[Roy68| pag. 265) sobre F; ® F; tal que
(ux v)(A x B) = u(A)v(B), para todo A € Fi, B € F.

Definicion A.2. Sean (2, Fi, 1i), @ € {1,2}, espacios de medida; consideremos el
espacio (21 X Qo, F1 & Fo, i1 X p2), sea E € Fy @ Fy, dado x € Qy definimos E, :=
{y € Qo|(z,y) € U X Qa}, dado y € Qy definimos B, = {x € Qy|(x,y) € U X Qa}.

Las demostraciones del lema[A.]] la proposicion[A.1] teoremal[A.dy teorema[A.d
estan en el libro de Royden |[Roy68| en el capitulo 12 seccion 4. Estos resultados se
aplican de manera anéloga con .

Lema A.4. Consideremos todo el contexto de la definicion [A.3 justo arriba. Sea
E € Fi1 ® F, tal que (uyg X po)(E) = 0. Entonces para casi todo x € €y se tiene

Proposicion A.1. En el mismo contexto sea E € F1®F, tal que (1 X o) (E) < 00.
Entonces para casi todo x € )y el conjunto E, es Fo-medible. Ademds la funcion
definida como

g(x) = po(E,).

es una funcion medible definida para casi todo x € €y; y

/ gdp = (X p2)(E).

Los teoremas de Fubini y Tonelli, son muy usados en el contexto de o-algebras
y medidas producto. Un espacio de medida (€2, F, 1) es completo si y solo si A C N
y (N) =0 implica A € F.

Teorema A.5. [Fubini] Sean (1, F1, 1), (22, Fa,v) dos espacios de medida com-
pletos y f una funcion integrable en €21 x Qq. Entonces:

i.- Para casi todo u la funcion f, definida por f,(v) = f(u,v) es una funcion
integrable en s.

i’.- Para casi todo v la funcion f, definida por f,(u) = f(u,v) es una funcion
integrable en €.

.- f92 f(u,v)dv(v) es una funcion integrable en €.

i’ fﬂ f(u,v)du(u) es una funcion integrable en Q.

.- fQ [fQ fdy} dj = fQQ Fd(v % p) = fQ U;z fd,u] dv.

Teorema A.6. [Tonelli] Sean (21, Fi, 1), (Qa, Fo,v) dos espacios de medida com-
pletos y f una funcion medible no negativa en 2y X Qs. Entonces:
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i.- Para casi todo u la funcion f, definida por f,(v) = f(u,v) es una funcion
integrable en €)s.

i’.- Para casi todo v la funcion f, definida por f,(u) = f(u,v) es una funcion
integrable en €.

.- f92 f(u,v)dv(v) es una funcion integrable en €.

i’ - fﬂ f(u,v)dp(u) es una funcion integrable en Q.

i fo [ o, fav) du= [, o rawxp = [, [ [, rdu] v

A continuacién se exponen algunos resultados sobre medida que usaremos mas
adelante.

Lema A.7. Sean (0, F;), i € {1,2}, espacios medibles con medidas p, v finitas,
sobre (Qq,F1), y medidas (', V' finitas sobre (Qg, F2) tales que p < v y p/ < v/
entonces pu X ' K v x v,

Demostracion. Sea E € o(§2; x €s) supongamos (v x v)(E) = 0, entonces por el
lema tenemos v/(E,) = 0 c.s.-v en la variable w. Por hipotesis ' < v/, por
tanto 1/ (E,) = 0 c.s.-v, también u < v, de donde p{w € 4 : p/(E,) # 0} = 0 por
tanto tenemos 1/(E,,) = 0 c.s.-u finalmente por la Proposicion [A. 1

(kx p)(E) = /#’(Ew)du = 0.

Lema A.8. Continuando

d(p > ) /d(v x V') = (dp/dv) (dp' [dv") .

Demostracion. Sea A x B C Qy X g rectangulo medible, usando el lema[A.3y el
teorema de Fubini tenemos:

Ahora consideremos el conjunto:

: d(p x pt')
D =<{¢ D medible de {0,1}%*% /—d(l/ xV)= [ ——d(v x )
5 d(v x v

Veamos que el conjunto es de Dynkin.
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a) Q0 x Qs €D porque es un rectangulo medible.

b) Consideremos F,F € ©, F C E:
dp dpl d,ud,u
/E dl/dl/d( V) = dv dv' (1p = 1p) dv x V)
dp dp dp dp /
/dudud /dudvdvxy)
_ [ dlpx ) : pox ) :
/d(yxz/’)d(yxy) /d(yx )d(VXV)
E F
_ d(p x i) :
_/ Wd(l/x I/).
E-F

¢) Sea {E,}nen € D; consideremos {F;} ;e donde F; = E, — | J/_} E,, tenemos:

Por a), b) y ¢); ©® es de Dynkin y al aplicar el teorema de clases mondtonas
se concluye que para todo conjunto medible E se tiene:

d(p x du dp ,
/d( < d(v x V') /dydydl/xu).

Tenemos entonces d(u x i) /d(v x V') = (dp/dv) (dy' /dV'). c.s. — v X V. O

Lema A.9. Sea (2, F) un espacio medible; i, v medidas tales que i < v, G sub-
sigma dlgebra de F. Se cumple:

du g _ dulg s
dl/’g h

Demostracion. Comenzamos por revisar que para X : 2 — R que es G-medible se

cumple para todo B € G:
/Xdl/\g = /Xdl/.
B B
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Esto es sencillo, observando que para todo A, B € G

/1AdVIV(AﬂB):V|G(AQB):/1ACZV‘G.
B B

Por la linealidad de la integral esto mismo se cumple para variables aleatorias sim-
ples, en consecuencia para variables aleatorias positivas, y luego para toda variable
aleatoria.

Si p < v, también plg < vlg, si v es sigma finita, también lo es v|g, por tanto
podemos escribir para todo B € G:

dp dplg plg
/ v = (B) = lo(B) = | vl / TRG
B

Por tanto E = C.S.-V. O




Apéndice B
Funciones Lipschitz

Las funciones Lipschitz y el analisis convexo juegan un papel fundamental en el
estudio de la privacidad diferencial, ya que proporcionan herramientas matemati-
cas precisas para controlar la sensibilidad de los algoritmos a cambios en los datos
individuales. En particular, una funciéon Lipschitz acotada garantiza que pequenas
variaciones en la entrada no produzcan grandes fluctuaciones en la salida, lo cual
es esencial para limitar la cantidad de informacién que puede filtrarse sobre un in-
dividuo especifico. Por otro lado, el analisis convexo permite formular y resolver
problemas de optimizacién que surgen en mecanismos de privacidad, como el dise-
no de ruido 6ptimo o la caracterizacion de garantias de privacidad en algoritmos
iterativos. La combinaciéon de ambas herramientas permite desarrollar mecanismos
diferenciales robustos, eficientes y con garantias matemaéticas verificables.

Definicion B.1. Consideremos (21,]|-||1), (22, ||||2) espacios de Banach, f : 2, —
Zy decimos que f es K-Lipschitz, si existe K > 0 tal que:

1f (@) = fW)lla < K|z —ylly  para todo z,y € Z1.

La forma mds general de esta definicion es en espacios métricos, en este trabajo se
usard para espactos de Banach.

Recordamos también que un campo escalar diferenciable f : D C R™ — R tiene
asociado el campo vectorial Vf : D C R® — R" dado por:

vy = (A )

81’1 ’ ’ axn
llamado gradiente de f.

Teorema B.1. Sea K un conjunto convexo en R™. Definimos el operador proyeccion
como:

i (z) = mind(z,y).
yeK
Entonces Il es una contraccion.

Demostracion. Consideremos x, z € R™ entonces:

M) = ()] = || min d, ) — min d(z, )|

42
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En primer lugar notemos que para todo w € K se tiene (z — [l (2), w — I (2)) <0,
cuando z € K es evidente; para el caso z € K¢ tenemos que z — [Ix(2) es un vector
normal a K, por ser K convexo; el angulo entre z — [Ix(2) y w — I (z) esta entre
7/2 y m por tanto se tiene la desigualdad con respecto al producto interior canénico
en R™ que esta en funcion del coseno del dngulo. Para una demostracion analitica
de este hecho, que involucra otros conceptos de convexidad consultar Lema 3.1.4
en [Nes04].Por las mismas razones tenemos (x — Il (x),w’ — I (z)) < 0 para todo
w’ € K. Sumando ambas expresiones tenemos

(z — i (2),w —Tx(2)) + (x — Hx(z),w — x(x)) <0;

sustituyendo w = I (z) y w’ = i (z) se sigue

De donde

M) = Te(2)]* = (Tx(x) — Ti(2), M () = e(2))
< —{z—z,Tlx(x) — i (2))
= (x — 2, (z) — Uk (2)) .

Usando la desigualdad de Cauchy-Schwarz
(r — 2, Ti(z) = g (2)) < |z — 2] T (z) = He(2)]]

Se concluye

1T (2) — e (2)|* < [l — 2[][] T () — T(2)]]
[T (2) = e (2)]] < [[2 = =[],

[]

Teorema B.2. Sea f : R — R es conveza con gradiente 3 — Lipschitz. Entonces
la funcion ¢ definida como

b(w) = w =V f(w)
es una contraccion sin < 2/f.

Demostracion.

lw =0V f(w) —w' +nVf(W)|* = |lw—w —5(Vf(w) = Vf(w))]
< lw = w/||* = 2 (V f(w) = Vf(w'), w —w) +0*|Vf(w) = V. f(w)]]*.

Ahora, por el lema de Baillon-Haddad corolario 18.16 en |[BC11|, f cumple

(VF(w) = Vf'),w— ) > %vau) V)
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entonces tenemos
|lw =1V f(w) —w' +nV f(w)]]
< w —w'|]* ~ 2n%|\Vf(w) = V()P +n?[|V f(w) =V f(w)]]?

B

Ahora, el gradiente es (-Lipschitz, entonces

— fhw— P + (772 - ﬂ) 1V £w) — V£

= ¥ fw) — ' + 7 @)
< llw— /| + (n2 - 2%) Bl — |

= (1+n*8* — 21B) [Jw — /| |?
= (1 =8 |jw -

Finalmente llegamos a

[l (w) =@l < [T =nBl || w—w]].

Considerando n < 2/8; n8 — 1 < 1. Por tanto 1) es una contraccion. n
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