
IIMAS
Universidad Nacional Autónoma de México

Agregando ruido a DG para llegar al
mínimo global.

Aprendizaje máquina teórico.

Alejandro Antonio Estrada Franco



1
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Para f : Rd → R el algoritmo que estudiaremos es el siguiente[1]:
Algoritmo 1 : Decenso de Gradiente Ruidoso; x1 ∈ Rd ;α > 0;σ > 0
▶ para t = 1,2, . . .
▶ Generar una realización de la v.a. Ut ∼ Unif [B2

r=1(0)]
▶ Calcular ▽f (xt)

▶ xt+1 = xt − α▽f (xt) + σUt
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Definición 1: (componente σ-suave). Para todo σ > 0 y una función
f : Rd → R, la componente σ-suave de f se define como:

fσ(x) = EU [f (x + σU)] =

∫
B2

r=1(0)
f (x + σy)pU(y)dy

definimos también:
rσ(x) = f (x)− fσ(x)
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Algunas observaciónes y notación:
▶ Supondremos f continuamente diferenciable para obtener

▽fσ(x) = ▽EU [f (x +σU)] = EU [▽f (x +σU)] = (▽f )σ(x); es decir:

▽fσ(x) = (▽f )σ(x).

▶ También denotaremos Et [·] = EUt [·], así mismo denominaremos
e1 = x1, y et+1 = Et [xt+1], además E[·] denotará el valor
esperado con respecto a la distribución conjunta de las
uniformes (se toman independientes). Por ejemplo si xt es el
último punto del algoritmo, tenemos E[xt ] = E1 . . .Et−1[xt ].
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▶ Asumiremos también que la componente σ-suave fσ es
l-fuertemente convexa, y L-suave con 0 < l ≤ L < ∞. En
consecuencia fσ tiene un único minimizador x∗

σ , con f ∗σ = fσ(x∗
σ).

▶ Otro supuesto que se considera es que existen escalares M y µ
tales que los gradientes ▽f y ▽fσ satisfacen:
VU [▽f (e + σU)] ≤ Mσ + µ||▽fσ(e)||2

▶ Finalmente consideraremos que f es L0-Lipschitz con respecto a
la norma euclidiana en Rd
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Lema 1: Bajo las iteraciones de DGR se satisface para todo n ∈ N:
et+1 = et − α▽f (et + σUt−1) + σUt−1 mas aún se cumple también
Et−1[et+1] = et − α▽fσ(et).

Demostración: Para cada t ∈ N tenemos xt+1 = xt − α▽f (xt) + σUt ,
tomando esperanzas con respecto a Ut ; et+1 = xt+1 − α▽f (xt) de
donde et+1 = xt+1 − σUt luego et+1 − et = −α▽f (et + σUt−1) + σUt−1
concluimos Et−1[et+1 − et ] = −α(▽f )σ(et) □.

Lema 2: Se cumple fσ(E[xt+1]) ≤ E[fσ(et+1)]

Demostración: De la convexidad de fσ y la desigualdad de Jensen:

fσ(E[xt+1]) = fσ(E1 . . .Et−1Et [xt+1])

= fσ(E1 . . .Et−1[et+1])

= fσ(E[et+1]) ≤ E[fσ(et+1)]

□.
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Lema 3: Para todo t ∈ N se verifica lo siguiente:

Et−1||et−1 − et || ≤ 2α2(µ+ 1)||▽fσ(et)||2 + α2M

donde:
M = 2Mσ + 2

(σ
α

)2

Teorema 1: Para todo t ∈ N se cumple:

fσ(E[xt+1])− f ∗σ − αLM
2l

≤ ρt
(

fσ(x1)− f ∗σ − αLM
2l

)
Si

0 < α ≤ 1
2L(µ+ 1)

donde ρ = 1 − αl ∈
( 1

2 ,1
)
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Lema 4: Para todo σ > 0 se cumple |fσ(x)− f (x)| ≤ L0σ
Demostración:

|fσ(x)− f (x)| = |EU [f (x + σU)− f (x)]|
≤ EU |f (x + σU)− f (x)|
≤ L0EU [||σU||] = L0σEU [||U||] ≤ L0σ □.

Lema 5: f ∗σ ≤ f ∗ + L0σ
Demostración: Tenemos que f (x) = fσ(x) + rσ(x), entonces:

f ∗ = ḿın
x∈Rd

f (x) ≥ ḿın
x∈Rd

fσ(x) + ḿın
x∈Rd

rσ(x) = f ∗σ + ḿın
x∈Rd

rσ(x)

Deacuerdo al Lema 4:

−L0σ ≤ ḿın
x∈Rd

rσ ≤ L0σ

Entonces tenemos f ∗ ≥ f ∗σ − L0σ □.
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Teorema 2: Para α y ρ como en el Teorema 1 se cumple para todo
t ∈ N:

f (E[xt+1])− f ∗ ≤ ρtM1 + M2

Donde:

M1 = fσ(x1)− f ∗σ −
αL
(
Mσ + (σα )

2
)

l
,

M2 = α

(
LMσ

l
+

L
(
σ
α

)2

l
+ L0

(σ
α

))
+ L0σ

Demostración: Por el Lema 4 tenemos para todo t ∈ N;
f (E[xt+1]) ≤ fσ(E[xt+1]) + L0σ = fσ(E[xt+1]) + αL0

(
σ
α

)
, luego del

Lema 5 −f ∗ ≤ −f ∗σ + L0σ por lo que tenemos:

f (E[xt+1])− f ∗ ≤ fσ(E[xt+1])− f ∗σ + αL0

(σ
α

)
+ L0σ
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Del Teorema 1 tenemos:

f (E[xt+1])− f ∗ ≤ fσ(E[xt+1])− f ∗σ + αL0

(σ
α

)
+ L0σ

≤ ρt
(

fσ(x1)− f ∗σ − αLM
2l

)
+

αLM
2l

+ αL0

(σ
α

)
+ L0σ

= ρtM1 + α

(
2Mσ + 2

(
σ
α

)2

2l
+ L0

(σ
α

))
+ L0σ

= ρtM1 + M2 □.
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Ejemplo: Consideremos la función
f (x , y) = x2 + y2 − cos(5πx)− cos(5πy)
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Se ilustran cuatro ejecuciones del algoritmo GDR con
t = 100, x1 = (5,0), σ = 0,05, α = 0,02
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Se ilustran cuatro ejecuciones del algoritmo GDR con
t = 100, x1 = (5,0), σ = 0,01, α = 0,015
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Se ilustran cuatro ejecuciones del algoritmo GDR con
t = 100, x1 = (5,0), σ = 0,015, α = 0,015
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