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Para f : R? — R el algoritmo que estudiaremos es el siguiente[1]:
Algoritmo 1 : Decenso de Gradiente Ruidoso; x; € R4 a>0;0 >0

» parat=1,2,...

» Generar una realizacién de la v.a. U; ~ Unif[B?_,(0)]
» Calcular vf(x;)

» Xi1 = X — aVIi(x:) + oU
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Definicién 1: (componente o-suave). Para todo ¢ > 0 y una funcion
f:RY — R, la componente o-suave de f se define como:

600 = Buli(e U] = [ i oppuy)ay

definimos también:
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Algunas observacidnes y notacion:

» Supondremos f continuamente diferenciable para obtener
Vi, (x) = VEy[f(x +oU)] = Ey[vi(x+oU)] = (Vf),(x); es decir:

v, (X) = (V)4 (X).

» También denotaremos E;[-] = E,[], asi mismo denominaremos
€1 = X1, Y €1 = E¢[Xr1], ademas E[-] denotara el valor
esperado con respecto a la distribucién conjunta de las
uniformes (se toman independientes). Por ejemplo si x; es el
altimo punto del algoritmo, tenemos E[x;] = E1 ... E;_1[X{].

Alejandro Antonio Estrada Franco | Aprendizaje maquina teérico



>Agregando ruido a DG para llegar al minimo

global

» Asumiremos también que la componente o-suave f, es
I-fuertemente convexa, y L-suave con 0 < / < L < oo. En
consecuencia f, tiene un Unico minimizador x?, con £ = f,(x%).

» Otro supuesto que se considera es que existen escalares My
tales que los gradientes vfy vf, satisfacen:

Vy[vi(e+oU)] < M, + ul|Vi,(e)l[?

» Finalmente consideraremos que f es Ly-Lipschitz con respecto a

la norma euclidiana en R
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Lema 1: Bajo las iteraciones de DGR se satisface para todo n € N:
err1 = e —avf(e + olUi_1) + cU;—y mas aun se cumple también
E:_q [em] = et — (an(er).

Demostracion: Para cada t € N tenemos x¢1 = x; — aVf(x;) + oU,
tomando esperanzas con respecto a Us; 11 = X1 — aVi(x;) de
donde e;1 = Xty 1 —oU; luego 11 — e = —avi(er+olUi_1) + o U+
concluimos E;_1[ei1 — & = —a(Vi),(er) O

Lema 2: Se cumple £, (E[x+1]) < E[f,(€:+1)]
Demostracion: De la convexidad de f, y la desigualdad de Jensen:

fo(E[Xt11]) = (Eq .. . Et_1E[Xe11])
= (Eqy...Ei_1][€r1])
= Ix(E[et1]) < E[fy(er41)]

O
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Lema 3: Para todo t € N se verifica lo siguiente:
Ei_1]ler—1 — et]| < 2<t,2(;1 + 1)va0(e[)H2 +a’M

donde: )
M = 2M, + 2 (5>

(6}

Teorema 1: Para todo t € N se cumple:

. alLM . alLM
BB - £~ 257 < ot (h0) - - %5 )

Si
1

NP L
O<”72L(u+1)

donde p=1—ale (3,1)

Alejandro Antonio Estrada Franco | Aprendizaje maquina teérico



>Agregando ruido a DG para llegar al minimo

global

Lema 4: Para todo o > 0 se cumple |f,(x) — f(x)| < Loo
Demostracion:

15,(x) = F(X)] = [Eulf(x + oU) - F(x)]]
< Ey|f(x + o) — f(x)|
< LeEy[lloU|l] = LooBu[l|UIll < Loo .

Lema55: f; < f* + Lyo
Demostracion: Tenemos que f(x) = f,(x) + r,(x), entonces:

f* = min f(x) > min f,(x) + min r,(x) = £ + min r,(x
x€RY ( )7XEE§” ( ) x€Rd ( ) xERY ( )

Deacuerdo al Lema 4:

7[_0(7' < minr, < L()O'
xeRd

Entonces tenemos f* > f* — Loo .
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Teorema 2: Para oy p como en el Teorema 1 se cumple para todo
teN:
f(E[X;+1]) . /)tM1 + M,

Donde:
al (M, + (2)?)
—

L(2)?
Mz(k(“‘/lﬁ +M+L0 <(T>> + Loo

/ / o

M1 = fU(X1) — f; —

Demostracion: Por el Lema 4 tenemos para todo t € N;
f(Ext11]) < £ (E[Xe11]) + Loo = 5 (E[xe14]) + alo (Z), luego del
Lema 5 —f* < —f* + Lyo por lo que tenemos:

((Blxear]) — < F(ED) — & + Lo () + Loo

Y
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Del Teorema 1 tenemos:

F(E[Xe1]) — F* < £ (B[xes1]) — £ + alo (:) + Lyo

(LM alM
< t _fx «
> p (fg()ﬁ) f(r 2/ > 2/

2M, +2(2)? o
N a <
/)M1+(1< 5] +L0<“>>+LOU

= ,()IM1 + Mo .

+aL0< >+L0(T
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Ejemplo: Consideremos la funcion
f(x,y) = x? + y2 — cos(5nx) — cos(57y)

20 =

fix, y)
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Se ilustran cuatro ejecuciones del algoritmo GDR con
t=100, x4 =(5,0), ¢ =0,05, a=0,02

Alejandro Antonio Estrada Franco | Aprendizaje maquina teérico



>Agregando ruido a DG para llegar al minimo

global ©

Se ilustran cuatro ejecuciones del algoritmo GDR con
=100, x; =(5,0), 0 =0,01, «=0,015
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Se ilustran cuatro ejecuciones del algoritmo GDR con
t=100, x4 =(5,0), ¢ =0,015, a=0,015
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